CIDIU Spa COLLEGNO (TO)

DISCARICA ESAURITA IN COMUNE DI ALPIGNANO (TO)

IN LOCALITA' BRUERE

RISULTATI DELLE INDAGINI DEL PIANO DI CARATTERIZZAZIONE

ED ANALISI DI RISCHIO

(Art. 242 comma 4 D.Lgs. 152/2006 e smi –

Allegato 1 al Titolo V della Parte Quarta del D.Lgs. 152/2006 e smi)

Dott. Ing. Mario Vaccarone
Via Carmine 32
10080 Oglianico (TO)
Ordine Ingegneri Provincia di Torino
n. 5743 x

1. INTRODUZIONE

Il sottoscritto dott. ing. Mario Vaccarone, iscritto all'Ordine degli Ingegneri della Provincia di Torino al n. 5743X, è stato incaricato da CIDIU SpA, con comunicazione in data 31/03/2020 prot. U0518/2020 (CIG Z8F2C8A907) (ordine del 01/04/2020 n.20.2020.41) di predisporre la Relazione sui risultati delle indagini ambientali e l'Analisi di Rischio (AdR) ai sensi dell'art. 242 comma 3 del D.Lgs. 152/2006 e smi, per l'area della discarica esaurita di prima categoria in Comune di Alpignano in località Bruere ai confini con i Comuni di Pianezza e di Rivoli (codice Anagrafe siti di bonificare 2625).

Si tratta di una discarica per rifiuti solidi urbani autorizzata con DGR 35-28718 del 11/10/1983, coltivata dal 1974 e chiusa nel mese di giugno 1988.

L'area in questione è di proprietà di CIDIU SpA. La titolarità dell'Autorizzazione era in capo al Consorzio Intercomunale di Igiene Urbana Collegno-Grugliasco-Rivoli. CIDIU Servizi SpA esegue le attività di monitoraggio e di gestione post chiusura della discarica.

Le indagini ambientali eseguite sono state quelle previste nel Piano di Caratterizzazione, redatto dallo scrivente nel mese di febbraio 2018, esaminato ed approvato con prescrizioni nella Conferenza dei servizi convocata dalla Città Metropolitana di Torino il giorno 29 marzo 2018.

Il citato Piano di Caratterizzazione è stato approvato dalla Città Metropolitana di Torino con Determinazione del Dirigente del Servizio Pianificazione e gestione Rifiuti, Bonifiche, Sostenibilità Ambientale n. 127-10787/2018 del 24/4/2018.

La Determina di approvazione del Piano di Caratterizzazione prevedeva una deroga ai termini previsti dal comma 4 dell'art. 242 del D.Lgs. 152/2006 e smi per la presentazione dei Risultati delle indagini e dell'Analisi di Rischio, vista la complessità idrogeologica del sito.

Con lettera della Città Metropolitana di Torino in data 28 gennaio 2020 prot. n 7446/TA1/GLS/SR pos. 004119, sono stati ridefiniti i termini di tempo per il completamento delle indagini ambientali e per la presentazione dell'Analisi di Rischio:

- proroga di 1 anno per il completamento delle attività di caratterizzazione rispetto al termine previsto del 31/01/2020;
- dilazione da 30 a 60 giorni per la presentazione della Relazione tecnica descrittiva dell'attività di caratterizzazione e del documento Analisi di Rischio.

Le prescrizioni autorizzative elencate nella Determina Dirigenziale di approvazione del Piano di Caratterizzazione e nella successiva lettera della Città Metropolitana di Torino del 28 gennaio 2020 sono le seguenti:

- a) indicare come potenziali recettori della contaminazione, oltre ai dipendenti CIDIU e/o imprese, anche il fiume Dora;
- b) effettuare le ricostruzioni piezometriche di dettaglio almeno in corrispondenza dei rilievi analitici trimestrali, valutando i rapporti tra l'acquifero sotterraneo ed il corpo idrico superficiale ed utilizzando tutti i punti disponibili, anche quelli utilizzati nell'ambito della bonifica dell'ex cotonificio;
- effettuare un numero di campagne di monitoraggio che vada a coprire un intero ciclo idrogeologico, quindi un anno solare, anziché i sei mesi previsti dalla normativa;
- d) individuare punti di campionamento delle acque superficiali (fiume Dora) in maniera da coprire più tratti del fiume Dora, che lambisce la discarica (settori a monte, intermedio ed a valle rispetto alla direzione di scorrimento della Dora); prescrizione modificata con lettera del 28 gennaio 2020 della Città Metropolitana di Torino nei seguenti termini: "effettuare per motivi di sicurezza un solo campionamento delle acque superficiali presso la passerella sulla Dora ed intensificare le rilevazioni dei dati idrometrici delle acque superficiali con frequenza mensile";
- e) rendere evidente in una planimetria anche i punti di monitoraggio dell'ex cotonificio e valutare se possono essere utilizzati anche per il procedimento di caratterizzazione/AdR relativo alla discarica;
- f) definire un punto di monitoraggio a monte della discarica (ad es. in corrispondenza del settore NO della discarica) interessando eventualmente anche terreni esterni alle pertinenze dell'impianto, esterno all'influenza della discarica, e poi uno a valle indagare le acque sotterranee (a monte e valle in riferimento alla direzione di scorrimento della Dora, non rispetto alla direzione delle acque di falda). Se non è possibile farlo, esplicitarne i motivi. Qualora possibile, prevedere anche qualche punto intermedio per individuare la sorgente di inquinamento;
- g) necessità di avere informazioni integrative sullo stato ambientale della discarica (ad es. livello del percolato rispetto al fondo dei lotti di discarica e rispetto al livello di falda);
- h) dettagliare tutti i vincoli territoriali presenti nell'area;
- i) estendere il tratto fenestrato dei nuovi piezometri per 2,00 m oltre il livello di falda in modo da intercettare l'acquifero freatico in tutte le condizioni e rilevare correttamente eventuali frazioni surnatanti;

 j) estendere il set analitico a contaminanti organici, quali idrocarburi, composti organoalogenati e aromatici previsti nella Tabella 2 Allegato 5 Titolo V Parte Quarta del D.Lgs. 152/2006 e smi.

Con riferimento a quanto sopra esposto, il presente documento si articola nei seguenti capitoli:

- 1) Introduzione
- 2) Inquadramento geografico, idrogeologico ed idrografico
- 3) Piano regolatore comunale e vincoli tecnico-amministrativi
- 4) Uso del suolo
- 5) Descrizione della discarica
- 6) Indagini previste e prescrizioni emerse in conferenza dei servizi
- 7) Indagini eseguite
- 8) Rilievi piezometrici, misure di livello della Dora, misure di livello del percolato; ricostruzione dell'assetto idrogeologico del sito e collegamenti con il sito ex Cotonificio Valle Susa
- 9) Campionamenti ed analisi delle acque di falda e superficiali
- 10) Analisi di Rischio
 - metodologia
 - Modello Concettuale
 - dati di input
 - elaborazione dell'Analisi di Rischio e risultati delle simulazioni
- 11) Conclusioni e proposte di intervento.

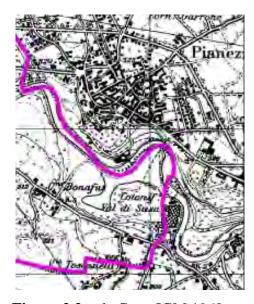
2. INQUADRAMENTO GEOGRAFICO, GEOLOGICO, IDROGEOLOGICO ED IDROGRAFICO

2.1 <u>Aspetti geografici</u>

La discarica in questione si trova in località Bruere in Comune di Alpignano nella parte sud-orientale del territorio comunale; la zona confina a nord con il Comune di Pianezza e ad est con il Comune di Rivoli (superficie dell'ex Cotonificio Valle Susa).

La zona è delimitata a nord da una ansa del fiume Dora Riparia.

L'accesso al sito avviene percorrendo la SP 177, lungo la direttrice "Alpignano-Collegno" e successivamente da una diramazione in direzione nord.


La discarica è ubicata su un terrazzo alluvionale con quote topografiche al contorno sui lati est, sud e nord di 302-305 m slm, più alte di circa 20 m rispetto alla quota topografica di piano campagna dell'adiacente ex Cotonificio Valle Susa.

La quota topografica della sommità della discarica è compresa mediamente fra 314,70 e 318,00 m slm.

Le quote topografiche di piano campagna naturali, rilevabili dalla cartografia IGM degli anni 1881 e 1960 riportate sulla Relazione Geologica di Piano Regolatore, indicano una quota media di 300 m slm, degradante verso il corso del fiume.

Figura 2.1 – da Carta IGM 1881

Figura 2.2 – da Carta IGM 1960

La discarica di rifiuti urbani ha volumetria autorizzata di 500.000 m³; a tale volumetria si devono aggiungere quelle oggetto di smaltimenti antecedenti

all'autorizzazione del 1983; la discarica è estesa 59.300 m² ed è stata attiva dal 1974 al 1988.

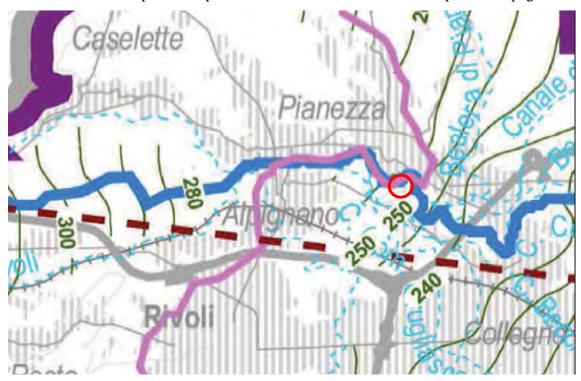
La superficie recintata è estesa 69.000 m².

Lo stato attuale dei luoghi è così sinteticamente descrivibile (vds **Tavole 1**, **2a** e **2b**, **4**, **5**):

- rilevato inerbito con presenza di vegetazione arborea ed arbustiva con quote topografiche assolute comprese fra 304-305 m slm e 318 m slm;
- pista perimetrale interna alla recinzione percorribile anche con mezzi d'opera (escavatori, sonde di perforazione) estesa sui lati est, sud ed in parte ovest, con quote topografiche assolute comprese fra 303 e 305 m slm;
- pista ciclopedonabile esterna alla recinzione sul lato ovest;
- presenza di infrastrutture per la gestione del biogas (pozzi di estrazione, tubazioni, due biofiltri, pozzi di monitoraggio perimetrali);
- sistema di drenaggio e raccolta percolato: trincea drenante esterna collegata a pozzi di sollevamento, tubazione di mandata (in corrispondenza della pista perimetrale ad est) dal pozzo di sollevamento alla fognatura di recapito ubicata sulla Strada Provinciale 177 a sud del sito.

2.2 <u>Aspetti geologici ed idr</u>ogeologici

Sotto il profilo geologico, la carta geologica allegata al Piano Regolatore di Alpignano, caratterizza la zona in esame con la sigla CSN3b Sintema di Palazzolo Subsintema di Ghiaia Grande (Olocene - attuale) - Depositi fluvio-torrentizi: ghiaie sabbiose a supporto di clasti e sabbie ghiaiose a supporto di matrice con intercalazioni sabbiose passanti verso l'alto a sabbie siltose inalterate debolmente alterate di spessore metrico (fondovalle principali e terrazzi sospesi); silt e sabbie siltose privi di stratificazione e inalterati con alla base lenti ghiaiose di ridotta estensione (fondovalle dei tributari).


La classe di pericolosità geologica (e idoneità all'utilizzazione urbanistica), riportata sulla citata carta geologica del PRGC di Alpignano, è la IIIa "pericolosità da elevata a molto elevata". (classi di pericolosità elencate sulla Circolare della Regione Piemonte 7/LAP/96 e smi).

L'idrogeologia della zona, ripresa dal sito WEB Arpa Piemonte (PIEZOMETRIA DELLA FALDA SUPERFICIALE NEL TERRITORIO DI PIANURA DELLA REGIONE PIEMONTE Bove A., Casaccio D., Destefanis E., De Luca D. A., Lasagna M., Masciocco L., Ossella L., Tonussi M.) sulla carta delle classi di soggiacenza in scala 1:250.000, evidenzia una soggiacenza compresa fra 5 e 10 m da piano campagna, tipica delle zone di raccordo fra pianura fondamentale e sistemi di

terrazzo. La superficie piezometrica si trova in prossimità dei corsi d'acqua a profondità inferiore ai 3 metri e quindi nella classe di soggiacenza fra 0 e 5 m ed è direttamente a contatto con i deflussi idrici superficiali. La direzione di deflusso è da nord-ovest verso sud-est.

Informazioni di maggiore dettaglio sull'idrogeologia sono state desunte dallo studio geologico-idrogeologico allegato al PRGC e redatto dai geologi Paolo Quagliolo e Marco Balestro (2012-2015). La carta idrogeologica allegata al PRGC di Alpignano evidenzia linee isopiezometriche dell'acquifero profondo alla quota di 250 m slm ad ovest del sito. Le linee isopiezometriche dell'acquifero superficiale sono rappresentante solo nella zona nord del territorio comunale a distanza dal sito di interesse e variano da 300 a 320 m slm.

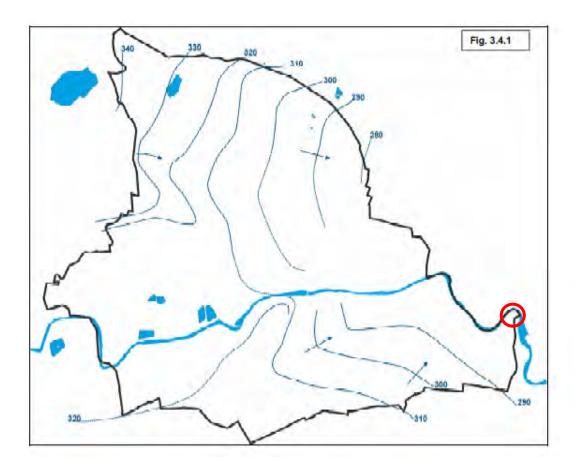
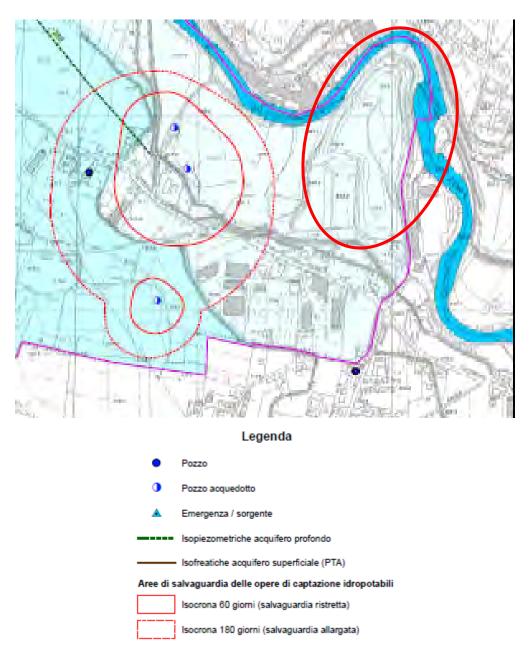

Facendo riferimento alla carta della base dell'acquifero superficiale allegata al "Piano Tutela Acque" della Regione Piemonte (Acquifero Superficiale - Area MS06 - Tav.02) (Figura 2.3), la zona di Alpignano ricade al limite dell'area studiata, in quanto l'anfiteatro morenico presenta una complessità geologica ed idrogeologica che non consente l'interpretazione dell'acquifero in continuità con quello di pianura. Dallo studio si evince comunque che il tetto del substrato si colloca a quote comprese fra 250 e 285 m slm, il che ne comporta una profondità media intorno ai 50 m dal piano campagna.

Figura 2.3 – Stralcio carta base acquifero superficiale (il sito è evidenziato con cerchio rosso)


Per quanto concerne la falda superficiale la citata Relazione Idrogeologica allegata al PRGC recita: "non è stato possibile ricostruire un preciso modello dell'andamento piezometrico a causa sia della complessità geologica ed idrogeologica dell'area (presenza di depositi fluvioglaciali che si sovrappongono a depositi glaciali a permeabilità da bassa a molto bassa), sia per l'assenza di un numero sufficiente di pozzi misurabili".

La Figura 3.4.1 a pagina 16 della Relazione Idrogeologica allegata al PRGC qui riportata (**Figura 2.4**), evidenzia uno schema dell'andamento presunto delle linee isopiezometriche che sono interrotte in prossimità della zona di interesse. L'andamento delle isopiezometriche a monte consente di valutare la quota piezometrica in prossimità della zona di interesse compresa fra 280 e 290 m slm, congruente con i livelli piezometrici misurati nell'area dell'ex Cotonificio Valle Susa posto ad est, comprese fra 286 e 289 m slm.

Figura 2.4 – Schema dell'andamento presunto delle linee isopieze nei pressi del sito (il sito è evidenziato con cerchio rosso)

La superficie di discarica è esterna alla zona di salvaguardia allargata (isocrona a 180 giorni) dei pozzi dell'acquedotto comunale ubicati ad ovest (vds **Figura 2.5** tratta dalla carta idrogeologica del PRGC di Alpignano). Tali pozzi hanno quota di testa pozzo di 308 m slm, profondità minima di 128 m e primo tratto fenestrato compreso fra 80 ed 84,5 m da piano campagna (quote assolute 228-223,50 m slm).

Figura 2.5 – Zone di salvaguardia dei pozzi dell'acquedotto (il sito è evidenziato con cerchio rosso)

2.3 Aspetti idrografici

Sotto il profilo idrologico la discarica in oggetto si trova in corrispondenza di un'ansa del fiume Dora Riparia in corrispondenza della cosiddetta Forra di Alpignano o "stretta di Alpignano". In tale tratto l'alveo, per le caratteristiche geologiche e morfologiche dei terreni attraversati non è stato soggetto a divagazioni.

Si riporta dalla Relazione Geologica Illustrativa del PRGC a firma del dott. geol. Paolo Quagliolo e dott. geol. Marco Balestro al capitolo 4.2:

"...la Dora Riparia nel tratto denominato "Forra di Alpignano", presenta andamento unicursuale, sinuoso, canaliforme, con presenza locale e subordinata di barre laterali.

Tale configurazione è legata all'elevata pendenza del tratto di alveo che raggiunge un valore medio dell'ordine dello 0,6%, differenziandosi nettamente dal tratto compreso nella piana a monte. Il profilo di fondo naturale del corso d'acqua è controllato dalla presenza di depositi fluvioglaciali localmente cementati ed artificialmente dalle numerose traverse di derivazione dei canali. L'imbocco della forra costituisce anche la soglia naturale per il tratto fluviale a monte della bassa valle Susa.

L'evoluzione planoaltimetrica di questo tratto della Dora, sulla base di una analisi della documentazione storica consultata e degli elementi geomorfologici osservati, risulta immutata nel tempo. Gli effetti della dinamica fluviale sono riconducibili ad alcuni fenomeni erosivi lungo le sponde, ai crolli alla base delle scarpate e di formazione e modificazione delle barre fluviali in alveo".

Il regime idrologico è di tipo nivo-pluviale, con piene tardo primaverili-estive ed autunnali e magre invernali. I valori di portata media mensile del fiume alla confluenza in Po (superficie sottesa di 1330 km²), alcuni chilometri a valle del sito, nel periodo 1951-1991 (da Piano di tutela delle acque della Regione Piemonte), variano da 14,8 m³/s del mese di febbraio a 59,8 m³/s del mese di giugno. Il modulo medio annuo è di 26 m³/s.

Tali valori di portata possono essere considerati rappresentavi anche per la zona in esame dove il bacino idrografico sotteso è di circa 1250 km².

I valori di portata di piena per diversi tempi di ritorno, riportati sulle schede tecniche dell'Autorità di Bacino del Po, sono compresi fra:

- Q (T 20 anni) = $250-270 \text{ m}^3/\text{s}$;
- $Q (T 100 \text{ anni}) = 450-490 \text{ m}^3/\text{s};$
- $Q(T 200 \text{ anni}) = 490-540 \text{ m}^3/\text{s};$
- $Q (T 500 \text{ anni}) = 590-570 \text{ m}^3/\text{s}.$

2.4 Proprietà del sito

L'area, di proprietà di CIDIU, sotto il profilo catastale occupa i seguenti mappali (vds **Tavola 4**) del catasto terreni di Alpignano:

- FOGLIO 23 da 83 a 88; FOGLIO 24 Mappale 82;
- FOGLIO 23 Mappali 36-47-48-49-50-51-52-53-54-55-56-57-67-72-73-74-75-76-67-68-83.

I mappali sono relativi alla zona di discarica e ad alcune zone circostanti (Foglio 24 Mappale 82 e Foglio 23 Mappali 67, 68, 83).

3. PIANO REGOLATORE COMUNALE E VINCOLI TECNICO AMMINISTRATIVI

Il PRGC di Alpignano classifica la zona in questione fra le zone libere ed in particolare come area Elc (aree boscate) normate dall'art. 26.2 delle Norme tecniche di attuazione (Vds. **Tavole 3a, 3b, 3c** estratte del PRG di Alpignano).

Il PRGC perimetra la superficie di discarica.

Le zone ad ovest sono classificate come Elb (Aree a destinazione agricola ad elevata produttività e a colture specializzate).

Una modesta porzione di superficie a sud è classificata come area di interesse ambientale (Ele).

Per quanto concerne <u>i vincoli tecnico amministrativi</u>, l'esame della cartografia di Piano Regolatore Comunale Tavola 1B "Carta dei vincoli paesaggistico ambientale", la carta 8G "Allegati Geologici - carta di sintesi" e la carta 09QC consentono di evidenziare quanto segue:

- Dalla carta 1B in scala 1: 5000 emerge (tavola 3c):

il settore nord della discarica è soggetto <u>al vincolo paesaggistico di 150 metri dalla sponda del fiume ai sensi del D.Lgs 22 gennaio 2004 n. 42art. 142 comma c ed il vincolo di inedificabilità ai sensi della L.R. 56/1977 per la prossimità del fiume per una distanza di 100 m in caso di assenza di argine. Gran parte della discarica è indicata come zona boscata, mentre le parte sommitale e le zone circostanti sono considerate "corridoi di connessione ecologica". La zona non è gravata da altri vincoli di natura paesaggistico ambientale.</u>

- Dalla carta 8G e 09QC in scala 1:5000 emerge (tavola 3b):

che la superficie rientra <u>parte in fascia B e parte in fascia C delle zone di esondazione</u> <u>fluviale della Dora Riparia previste da PAI.</u> Ad ovest della zona si individuano le aree di salvaguardia di pozzi ad uso potabile.

Dall'esame della cartografia di PRGC non si rileva la presenza di altri vincoli (beni architettonici, prossimità infrastrutturale, ecc.).

Le **Figure 3.1** e **3.2** rappresentano quanto descritto.

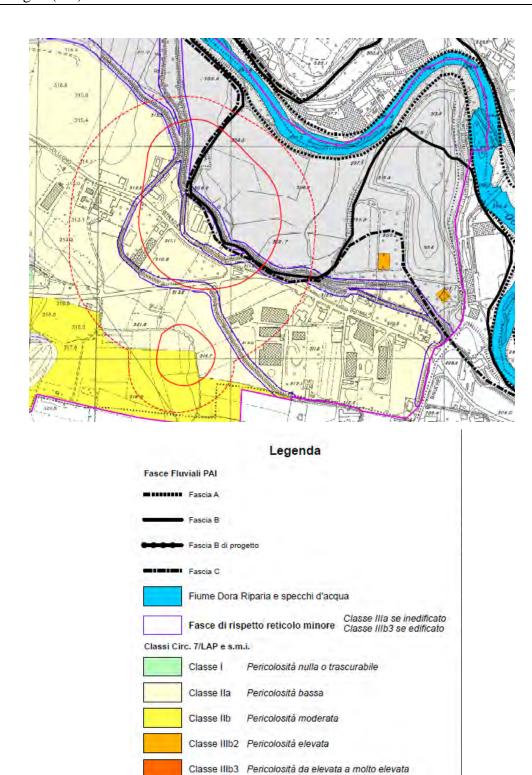


Figura 3.1 – Stralcio Tavola 8G di PRGC

Classe Illa Pericolosità da elevata a molto elevata

Classe IIIb4 Pericolosità molto elevata

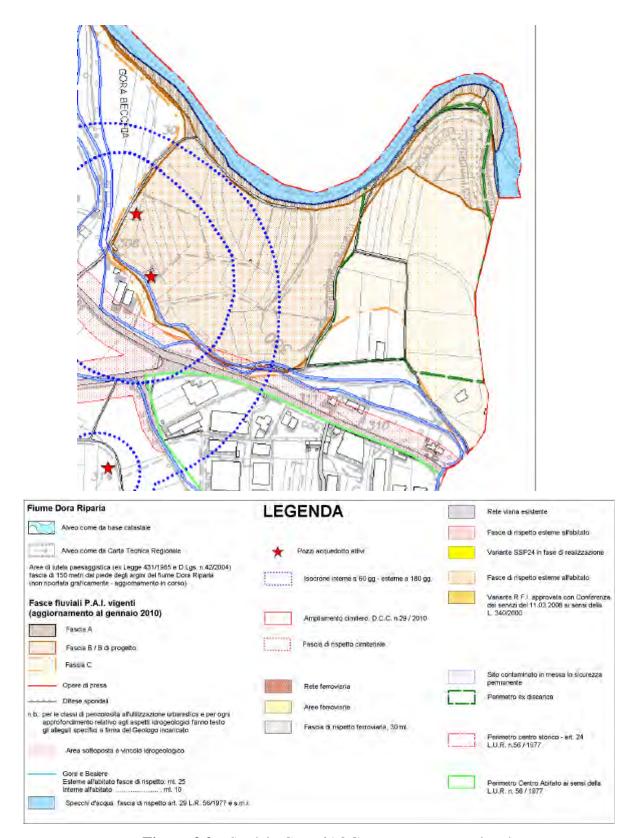


Figura 3.2 – Stralcio Carta 09QC - aree soggette a vincolo

4. USO DEL SUOLO

Da sopralluoghi effettuati sul sito si rilevano i seguenti utilizzi del suolo nelle zone circostanti la discarica:

- a nord la presenza dell'alveo del fiume in corrispondenza della cosiddetta Forra;
- ad est i terreni in posizione ribassata dell'ex Cotonificio Valle Susa;
- a sud est superfici boscate in parte incolte;
- a sud ovest e ad ovest superficie coltivate.

Uno studio del CSI Piemonte con la Provincia di Torino sulle trasformazioni nel tempo dell'uso del suolo per la zona di esame evidenzia l'evoluzione dell'utilizzo del suolo nell'areale circostante la discarica nel periodo 1880-1990.

L'esame della cartografia permette di rilevare l'evoluzione urbanistica nel territorio circostante il sito.

Per il sito si possono rilevare le variazioni morfologiche in particolare fra 1960 e 1990: nel 1960 terreno con morfologia naturale, nel 1990 terreno con morfologia modificata dalla presenza della discarica. La **Figura 4.1** rappresenta quanto descritto.

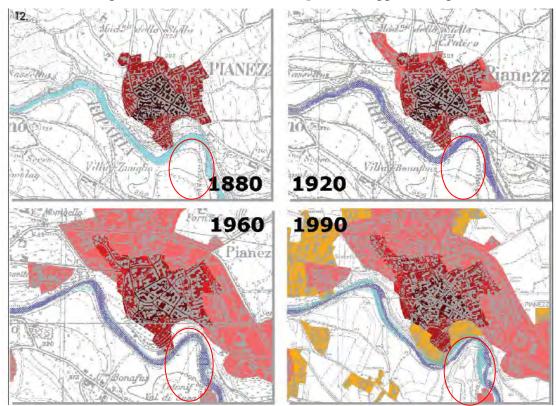


Figura 4.1 – Cartografie del sito in anni diversi (il sito è evidenziato con cerchio rosso).

5. DESCRIZIONE DELLA DISCARICA

La descrizione delle principali caratteristiche della discarica è ripresa dal documento dell'ATOR luglio 2013 Allegato 1 "Ricognizione discariche esaurite":

"La discarica è stata autorizzata con DGR 35-28718 dell'11/10/1983 per una volumetria complessiva di circa 500.000 m³. La coltivazione era iniziata presumibilmente nel 1974; l'impianto è stato chiuso nel giugno 1988. La titolarità dell'autorizzazione è in capo a CIDIU SERVIZI SpA.

La discarica è costituita da tre lotti realizzati in periodi successivi e con tecnologie adeguate al periodo di costruzione. In particolare, il corpo centrale della discarica, in esercizio dal 1974 al 1984, era allestito senza alcun sistema di impermeabilizzazione artificiale, ma si basava per la protezione dalla diffusione di percolato, esclusivamente sullo strato argilloso naturale presente in posto dello spessore di circa 5 m.

Nel periodo dal 1984 al 1987 venne allestito e coltivato il settore di discarica ubicato all'estremità nord; tale settore venne dotato di un telo in HDPE sovrapposto allo strato di argilla già presente.

Nel periodo 1987-1988 venne realizzato e coltivato un piccolo settore all'estremità sud, con impermeabilizzazione in HDPE e di sistema di drenaggio e raccolta del percolato.

L'area della discarica ha una superficie di circa 59.300 m²; si presenta come una piramide tronca base irregolare.

Le quote topografiche della sommità sono dell'ordine di 314-318 m slm.

La pista perimetrale è posta a quote topografiche comprese fra 303 e 305 m slm.

Le informazioni storiche ed i dati tecnici disponibili e forniti da CIDIU sono descritti nel prosieguo.

La discarica fu impostata inizialmente su uno scavo praticato a seguito di precedente attività estrattiva di materiali inerti e fu sviluppata in rilevato rispetto all'originario piano campagna. Inizialmente fu utilizzata dalla Società Eliminazioni Rifiuti srl (S.E.R.) per conto dei comuni di Collegno, Rivoli, Alpignano e Grugliasco; solo nel 1982 subentrò il Consorzio CIDIU, che affidò la gestione ancora alla S.E.R. fino al 1988, anno di chiusura della discarica.

I principali dati tecnici noti della discarica:

• Anno presumibile di inizio attività: 1974

• Anno subentro CIDIU: 1984

• Anno chiusura: 1988

• Volume autorizzato: 500.000 m³

- Rifiuti abbancati: 1.000.000 t (considerando anche la discarica non impermeabilizzata)
- Presenza e descrizione dell'impermeabilizzazione (a partire dal fondo):
 - porzione ante 1984 (44.000 m² nella zona centrale): impermeabilizzazione costituita da strato argilloso naturale (6 m)
 - porzione nord (1984-1987): impermeabilizzazione costituita da argilla naturale e teli in HDPE come da DPR 915/82
 - porzione sud (1987-1988): impermeabilizzazione con telo in PEAD e sistema di drenaggio e raccolta percolato
- Copertura finale costituita da terreno coesivo nella zona ovest di scarpata visibile e con caratteristiche non note nelle altre zone
- Gestione del gas:
 - sistema di estrazione del gas: pozzi di estrazione interni alla discarica collegati ad una ventola di aspirazione e ad un biofiltro; pozzi di estrazione esterni collegati da una ventola e ad un biofiltro
 - modalità di trattamento del gas: n. 2 biofiltri (uno per il biogas interno e l'altro per il biogas esterno)
- Gestione percolato
 - modalità di smaltimento del percolato prodotto: collegamento alla fognatura, che recapita ad impianto di depurazione

Produzione annua di percolato - anno 2017: 4.577 m³

Produzione annua di percolato - anno 2018: 10.939 m³

Produzione annua di percolato - anno 2019: 8.552 m³

Produzione annua di percolato - anno 2020: 4.976 m³

N° pozzi di estrazione: 8

N° pompe sollevamento percolato: 8

- Presidi di monitoraggio ambientale
 - sistema di monitoraggio gas sottosuolo esterno (rete perimetrale): 11 punti di misura (A1, A2, A3, A4, A5, A6, A6bis, A7, A7b, A8, A9)
 - sistema di monitoraggio gas sottosuolo esterno (rete esterna): 11 punti di misura (B1, B2, B3, C1, C2, C2bis, C3, C3Bis C4, C4b, C5bis).

A seguito della realizzazione di un sistema di monitoraggio del gas nel sottosuolo esterno nel corso del 2005, sono stati rilevati fenomeni di migrazione del gas e sono state richieste attività di messa in sicurezza della discarica, consistenti principalmente nel mantenimento di un sistema di estrazione del gas all'interno della stessa, di una rete di bonifica perimetrale e un sistema di monitoraggio più esterno.

Il sistema di raccolta del percolato è costituito da una trincea drenante, realizzata nel 1986, che si sviluppa lungo il lato est della discarica e si approfondisce sino allo strato impermeabile di fondo: tale trincea intercetta il flusso di percolato e lo

convoglia verso una serie di pozzi di raccolta da cui viene poi estratto con l'uso di pompe. Venne inoltre realizzato un drenaggio lungo tutto il perimetro critico della discarica (ai piedi della scarpata) al fine di consentire la captazione sia dei percolati sia delle acque di dilavamento che pervengono dal corpo discarica e vengono convogliate mediante tubazioni nella stazione di pompaggio posta sul lato est.

Dal pozzo di sollevamento, sul lato est, il percolato viene pompato in un collettore fognario ubicato sulla Strada Provinciale 177 a sud del sito ed afferente all'impianto di depurazione di Pianezza in sponda sinistra del fiume Dora ed in prossimità del tracciato della tangenziale di Torino.

Sulla base delle stratigrafie delle perforazioni per i sondaggi in particolare PZ12 e PZ10, si rileva la presenza dello strato argilloso a partire dalle quote topografiche di 297 m slm. Tale strato argilloso è descritto nelle stratigrafie dei sondaggi come argilla marronastra, argilla con sabbia, limo argilloso marrone rossastro ed ha spessore variabile da circa 3 m (PZ10 e PZ9) a 5 m (PZ12). In PZ8 gli strati con argilla si riscontrano da quota 300 m slm; probabilmente si tratta di materiali non naturali ma di riporto

Se i primi lotti di discarica sono stati impostati su tale strato argilloso è ragionevole presumere che il fondo della discarica sia posto alle quote topografiche assolute comprese fra 295 e 297 m slm. Questa ipotesi è supportata sia dalle informazioni circa la realizzazione della discarica sul lato vertice nord (stesa di telo in PEAD su strato di argilla preesistente), sia dalle considerazioni esposte sull'evoluzione della morfologia del territorio:

- anno 1960 isoipsa di 300 m slm nella zona sud con valori inferiori verso il corso del fiume;
- attività estrattiva pregressa prima della realizzazione della discarica.

È quindi ragionevole presumere che da una superficie iniziale con quote topografiche di circa 300 m slm ed inferiori, l'attività di scavo per approvvigionamento inerti abbia determinato l'abbassamento del terreno sino alle quote medie di 297-295 m slm sino ad incontrare gli strati di materiale argilloso limoso (vds paragrafo 7.5 assetto litostratigrafico locale e stratigrafie in allegato 6)

Tali quote, 295-297 m slm, sono superiori sia alla quota topografica della superficie dell'ex Cotonificio Valle Susa (mediamente dell'ordine 293 m slm), sia a quelle della Dora Riparia (mediamente dell'ordine di 293 m slm in corrispondenza del ponte) e dei terreni di monte e valle dell'ex cotonificio (287 m slm).

La quota ipotizzata del piano di imposta della discarica 295-297 m slm, è superiore di circa 6 m rispetto alla soggiacenza delle acque sotterranee misurata nel nuovo piezometro PZ10 e di circa 8-10 m rispetto alle quote di soggiacenza misurate nei pozzi dell'ex cotonificio.

6. INDAGINI PREVISTE NEL PIANO DI CARATTERIZZAZIONE E CONFRONTO CON LE PRESCRIZIONI AUTORIZZATIVE

Le indagini previste nel Piano di Caratterizzazione approvato erano le seguenti:

- realizzazione di n. 6 piezometri a tubo aperto denominati PZ7, PZ8, PZ9, PZ10, PZ11, PZ12, profondi 25 m ad eccezione del PZ7 la cui profondità prevista era di 15,00 m, ubicati perimetralmente alla discarica in posizione condizionata dalla logistica e dall'accessibilità, con diametro minimo della tubazione 4" e tratto finestrato tra -13 e -24 m e tra -5 e -14 m per il piezometro PZ7;
- esecuzione di prove di permeabilità in foro in alcuni piezometri;
- rilievi piezometrici nei piezometri realizzati ed in quelli esistenti presso l'area dell'ex Cotonificio Valle Susa in occasione dei campionamenti delle acque di falda;
- rilievi del livello del percolato nei pozzi interni alla discarica;
- campionamento delle acque sotterranee nei piezometri realizzati ed in quelli esistenti presso l'area dell'ex Cotonificio Valle Susa ed analisi chimiche di laboratorio per la determinazione dei seguenti parametri:
 - o pH;
 - o temperatura;
 - o conducibilità elettrica;
 - o ossidabilità Kubel;
 - o cloruri;
 - o solfati;
 - o azoto ammoniacale, nitroso e nitrico;
 - o metalli (boro, arsenico, cadmio, cromo totale, ferro, manganese, mercurio, nichel, piombo, rame, zinco);
 - o idrocarburi, composti organoalogenati e aromatici previsti nella Tabella 2 Allegato 5 Titolo V Parte Quarta del D.Lgs. 152/2006 e smi;
- campionamento delle acque superficiali nel tratto di fiume ad ovest, a nord e ad est della discarica ed analisi chimiche di laboratorio per la determinazione dei seguenti parametri:
 - o pH;
 - o COD;
 - o azoto ammoniacale;

o metalli (arsenico, cadmio, cromo totale, ferro, manganese, mercurio, nichel, piombo, rame, zinco).

I riferimenti normativi per l'esecuzione delle analisi chimiche per le acque sotterranee è la Tabella 2 in Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/2006 e smi ed in particolare: "Concentrazione soglia di contaminazione nelle acque sotterranee" (ad eccezione del parametro "azoto ammoniacale" e del parametro "boro" i cui limiti di riferimento sono quelli del D.Lgs. 31/2001, ossia rispettivamente 0,5 mg/l e 1,0 mg/l).

I risultati delle analisi chimiche sui campioni di acqua del fiume Dora Riparia sono confrontati fra loro e per quanto possibile con i risultati delle analisi delle acque sotterranee per verificare l'eventuale interferenza reciproca fra acque di falda e acque superficiali e per verificare le variazioni tra monte e valle, rispetto al sito, della qualità delle acque del fiume.

In riferimento alle prescrizioni della Determina Dirigenziale di approvazione del Piano di Caratterizzazione riportate al Capitolo, 1 non si è potuto realizzare quanto indicato al punto f) "definire un punto di monitoraggio a monte della discarica (ad es. in corrispondenza del settore NO della discarica) interessando eventualmente anche terreni esterni alle pertinenze dell'impianto".

Occorre evidenziare come a nord-ovest della discarica il terreno fra discarica ed alveo del fiume è costituito da una scarpata acclive con fitta vegetazione, mentre ad ovest della discarica le superfici potenzialmente utili sono superfici coltivate non direttamente raggiungibili dalle pertinenze CIDIU.

Le motivazioni per cui non si è potuto realizzare tale punto di monitoraggio sono state anticipate da CIDIU alla Città Metropolitana con lettera in data 15 giugno 2018 prot. U18/690.

Si ritiene comunque che il piezometro PZ12, dove è stato realizzato possa fornire informazioni rappresentative ed utili a caratterizzare le acque sotterranee a sudovest della discarica.

Per quanto riguarda i tratti finestrati e cementati nei piezometri previsti, il confronto fra le prescrizioni di ARPA e le misure di soggiacenza eseguite evidenzia:

- 1) i tratti fenestrati sono compresi fra -13 e -24 m da testa pozzo in PZ8, PZ9, PZ10, PZ11; da -9 a -20 m in PZ7, da -11 a -24 m in PZ12;
- 2) la cementazione dell'intercapedine foro-tubazione è stata fatta negli ultimi 2 m, quindi eventuale presenza di acqua può essere intercettata dal dreno presente fra tratto fessurato e tratto cementato;

3) il livello delle acque sotterranee misurato nei vari piezometri è sempre risultato in corrispondenza del tratto fenestrato ad eccezione del piezometro PZ10, dove i livelli idrici rilevati sono a quota superiore.

I rilievi di livello della Dora ed i campionamenti delle acque superficiali sono stati eseguiti secondo le frequenze richieste nel punto in corrispondenza del Ponte (ID2=CFB2); negli altri due punti a monte (ID3=CFB1) ed a valle (ID1=CFB3) l'esecuzione dei rilievi e dei campionamenti è stata condizionata da ragioni di sicurezza per l'accessibilità al punto di misura dalla situazione idrologica del fiume.

Rilievi di livello del percolato nei pozzi di monitoraggio interni alla discarica sono stati eseguiti con frequenza trimestrale nel 2019 e con frequenza mensile nel 2020.

7. INDAGINI ESEGUITE

7.1 <u>Esecuzione dei piezometri</u>

I piezometri PZ7-PZ11 sono stati eseguiti dalla ditta Montiglio Pozzi, con sede in Vinovo (TO) nel mese di novembre 2018.

Il piezometro PZ12 è stato realizzato dalla Ditta Carsico srl con sede in Rivalta (TO) nel mese di luglio 2020; le attività eseguite dalla Ditta Carsico hanno riguardato anche la realizzazione di 4 pozzi di monitoraggio dell'aria interstiziale perimetralmente alla discarica (C2bis, C3bis, C5bis e A6bis), profondi 21 m nella zona sud-ovest della discarica.

In **Allegato 1** e **2** si riportano le Relazioni e le stratigrafie dei piezometri eseguiti.

I piezometri sono stati rilevati topograficamente. Le coordinate di riferimento e le profondità degli stessi sono le seguenti:

	X (Est)	Y (Nord)	Quota testa pozzo (m slm)	Profondità (m)
PZ7	1386044,24	4994194,96	297,09	21
PZ8	1386021,90	4994313,46	304,08	25
PZ9	1386042,51	4994500,51	303,93	25
PZ10	1386049,09	4994608,95	303,08	25
PZ11	1385931,23	4994187,23	303,65	25
PZ12	1385802,73	4994375,74	305,34	25

Il piezometro PZ7 è stato approfondito da 15 a 21 m sino ad intercettare le acque sotterranee; la fenestratura del piezometro è stata realizzata da -9 a -20 m da testa pozzo.

I piezometri sono stati realizzati a carotaggio continuo con rivestimento provvisorio da 178 mm; sono stati completati con tubazione in PVC di diametro 4", fessurata da -1,00 m da fondo foro per un tratto di 11 m nei piezometri PZ7, PZ8, PZ9, PZ10, PZ11, per un tratto lungo 13 m nel PZ12.

L'intercapedine fra foro e tubazione è stata riempita con ghiaietto selezionato (3/8 mm) in corrispondenza del tratto filtrante di tubazione sino a -2,00 m da piano campagna; la parte soprastante l'intercapedine è stata cementata con compactonite per un tratto di 60 cm e con miscela cemento bentonite per il restante tratto.

Il tratto terminale è stato completato con pozzetti metallico lucchettato.

I valori di soggiacenza da testa pozzo misurati subito dopo la realizzazione dei piezometri risultano i seguenti:

- PZ7 = -18,06 m;
- PZ8 = -24,70 m;
- PZ9 = -24,35 m;
- PZ10 = -12,09 m;
- PZ11 = -21.96 m;
- PZ12 = -20.00 m.

L'osservazione delle stratigrafie consente di evidenziare quanto segue:

- nelle zone nord ed est (piezometri da PZ7 a PZ11), si rileva la presenza di strati anche di potenza metrica di materiale argilloso frammisto a sabbia e ciottoli; solo nel piezometro PZ10, quello più a nord verso la Dora, gli strati argillosi sono limitati come numero e spessore (fra 7,7 e 10,00 m);
- nella zona sud-ovest (piezometro PZ12) si rilevano un'alternanza di strati sabbioso ghiaiosi e la presenza di uno strato limoso-argilloso marrone rossastro da 8,30 m a 12,70 m probabilmente di ridotta estensione areale (infatti non si riscontra nel piezometro C5bis).

7.2 Prove di permeabilità in foro

Le prove di permeabilità in foro sono state eseguite nel mese di luglio 2020 dalla Ditta Carsico nel piezometro PZ12 e nel piezometro per il monitoraggio dell'aria interstiziale A6bis alla profondità di 4-5 m dal piano campagna. Le prove sono state eseguite a carico costante con determinazione della conducibilità idraulica (k).

In **Allegato 2**, nella Relazione "Carsico", si riporta il dettaglio delle prove eseguite.

Nel piezometro PZ12 il coefficiente di conducibilità idraulica risulta di $1,32 \times 10^{-4}$ m/s; il tratto di terreno interessato dalla prova è costituito da ghiaia eterometrica con diametro massimo di 6 cm, poligenica, arrotondata con qualche ciottolo di diametro 20 cm con sabbia medio-grossa grigio verdastra.

Nel piezometro per l'aria interstiziale A6bis la conducibilità idraulica risulta di 2,24 x 10⁻⁴ m/s; il tratto di terreno interessato dalla prova è costituito dallo stesso strato di terreno sopra descritto per il piezometro PZ12.

7.3 Rilievi piezometrici ed idrometrici

I rilievi piezometrici ed idrometrici sono stati eseguiti dal mese di settembre 2017 nei piezometri PZ1-PZ6 dell'area dell'ex Cotonificio Valle Susa e da febbraio 2019, con frequenza trimestrale, negli altri piezometri circostanti la discarica.

Da gennaio 2020 i rilievi di soggiacenza sono stati eseguiti con frequenza mensile.

Come richiesto nella Determina di approvazione del Piano di Caratterizzazione, i rilievi piezometrici, così come i campionamenti delle acque sotterranee sono stati eseguiti in contemporanea sia nei piezometri dell'ex cotonificio sia in quelli realizzati per la discarica.

Dal mese di maggio 2019 sono state eseguite le misure di livello della Dora con frequenza trimestrale e da gennaio 2020 con frequenza mensile.

Dal mese di febbraio 2019 sono stati eseguiti rilievi del livello di percolato nei pozzi interni alla discarica con frequenza trimestrale nel 2019 e con frequenza mensile nel 2020.

Nei piezometri previsti dal Piano di Caratterizzazione (PZ7-PZ12), le misure della soggiacenza hanno evidenziato livelli idrici significativi e con continuità stagionale nel piezometro PZ10 ed in misura minore in PZ7. Negli altri piezometri in alcune campagne di misura si è rilevata l'assenza di acqua o livelli decimetrici; tale situazione è legata alla stagionalità ed alla stratigrafia del terreno in corrispondenza dei piezometri. La presenza di livelli di sedimenti a prevalente matrice argillosa ostacola o impedisce la circolazione idrica sotterranea.

Sono state inoltre eseguite misure di soggiacenza anche nei piezometri (diametro 2 pollici) esistenti e denominati con sigla A1-A3 (pozzi di monitoraggio dell'aria interstiziale).

I risultati delle misure sono riportati nelle tabelle in **Allegato 3**.

Nel Capitolo 8 si sintetizzano e commentano i risultati dei rilievi e si descrive la loro interpretazione idrogeologica.

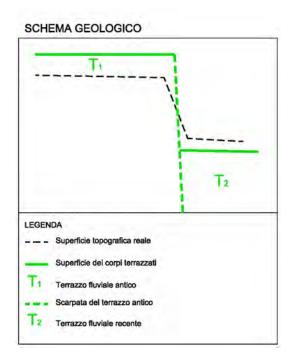
7.4 <u>Campionamenti ed analisi delle acque sotterranee e superficiali</u>

In occasione dei rilievi piezometrici trimestrali sono stati eseguiti anche i campionamenti delle acque sotterranee e superficiali per le successive analisi chimiche di laboratorio.

Le modalità di campionamento sono state quelle previste nel Piano di Caratterizzazione: campionamento dinamico previo spurgo del piezometro.

Il prelievo di campioni di acqua sotterranea nei piezometri da PZ7 a PZ12 non sempre è stato possibile. Sono stati prelevati con continuità campioni solo dal PZ10 ed

in alcuni casi da PZ7 e PZ9, PZ11 e PZ12. In PZ8 non sono stati prelevati campioni di acqua.


Analogamente, per le acque superficiali del fiume Dora i campionamenti sono stati eseguiti con continuità nel punto a nord in corrispondenza del ponte (ID2).

I risultati dei campionamenti sono riportati al Capitolo 9.

7.5 Assetto litostratigrafico a scala locale

Al fine di una maggiore comprensione dell'assetto geologico ed idrogeologico dell'area in esame sono state realizzate due sezioni litostratigrafiche (vds. **Tavola 1** in **Allegato 6**) volte a rappresentare i rapporti stratigrafici tra i terreni di riporto, i vari orizzonti di terreno naturale ed il corpo della discarica.

Dal punto di vista geologico l'area in esame è ubicata all'interno di un sistema di terrazzi alluvionali formatesi in epoche differenti, la cui genesi è dovuta alla dinamica fluviale del fiume Dora Riparia che attualmente fluisce ad est dell'ex cotonificio. Per comprendere la dinamica evolutiva dell'area di studio si riporta uno schema geologico esemplificativo (riportato anche nella sezione B-B') all'interno del quale i pedici delle lettere "T" di "terrazzo" indicano i rapporti di genesi temporale relativa tra i terrazzi considerati.

Più precisamente il corpo della discarica è impostato all'interno di un terrazzo alluvionale (indicato con la sigla "T1" nello schema) la cui superficie, ormai rimodellata dall'attività antropica, è posta ad una quota topografica di circa 302-305 m slm,

superiore rispetto al sedime dell'ex cotonificio, il quale, invece, è ubicato ad una quota di circa 293 m slm, al di sopra dei depositi riferibili ad un corpo terrazzato più recente (indicato con la sigla "T2"), anch'esso rimodellato dall'attività antropica.

Nel dettaglio è stata realizzata:

- una sezione geologica orientata circa N-S, delimitata dai punti A-A', indicati nella planimetria allegata al testo (vds. Tavola 1 dell'**Allegato 6**), che taglia longitudinalmente la scarpata morfologica di collegamento tra la discarica e l'ex cotonificio e che mostra gli orizzonti geologici del terrazzo alluvionale più antico, ed
- una seconda sezione, circa perpendicolare rispetto alla prima, orientata WNW-ESE, delimitata dai punti B-B', che taglia trasversalmente il corpo sia la discarica che l'ex cotonificio e mostra i rapporti tra i due corpi terrazzati e la discarica.

La ricostruzione litostratigrafica rappresentata nelle sezioni citate è stata eseguita a partire dall'interpolazione delle stratigrafie dei seguenti sondaggi:

- Sezione A-A' PZ10, PZ9 e PZ7;
- Sezione B-B' PZ12, PZ8 e PZ4.

Dalla sezione A-A' (vds. Tavola 2 dell'**Allegato 6**) si evince il seguente schema stratigrafico:

- **terreno di riporto**, a granulometria variabile contente talvolta laterizi, di spessore variabile da un massimo di circa 9,5 m in PZ9 (ubicato ad una quota di quasi 304 m slm) ad un minimo di 4 m in PZ7 posto ad una quota inferiore (circa 297 m slm);
- **orizzonte 1**: terreno a granulometria prevalentemente fine, limoso-argillosa, localmente sabbiosa, evoluto, di colore marrone-rossastro;
- **orizzonte 2**: terreno con matrice a granulometria fine o medio-fine, costituita da argilla, contenente ghiaia e ciottoli, con intercalazioni sabbioso-limose, di colore da grigio a marrone;
- **orizzonte 3**: terreno a granulometria prevalentemente grossolana, ghiaiosaciottolosa, immerso in una matrice sabbiosa con locali intercalazioni limosoargillose attorno allo scheletro grossolano. Il colore di tale orizzonte è variabile dal marrone al grigio al bluastro.

Lo spessore degli orizzonti 1, 2 e 3 risulta essere piuttosto variabile a seconda dei sondaggi analizzati, ciò è dovuto principalmente ad un rapporto di eteropia di facies tra gli orizzonti stessi come rappresentato nella sezione in esame.

Per quanto riguarda la sezione B-B' (vds. Tavola 3 dell'**Allegato 6**) si può notare come:

- il terreno di riporto presenti uno spessore di circa 8-9 m in corrispondenza del terrazzo più antico (PZ12), raggiunge il suo massimo spessore in PZ8 ubicato in corrispondenza della viabilità realizzata lungo la attuale scarpata morfologica fortemente modificata dall'attività antropica, per poi diminuire fino a raggiungere circa 4 m di spessore in corrispondenza del terrazzo su cui è impostato l'ex cotonificio (PZ4);
- l'orizzonte 1, a granulometria da fine a medio-fine, intercettata unicamente nel sondaggio PZ12, all'interno del terrazzo più antico, costituisce il probabile orizzonte a bassa permeabilità in cui è stata impostata la discarica. Il piano di posa della discarica è infatti stimato ad una quota compresa tra 297 e 295 m slm in corrispondenza della quale è presente tale orizzonte avente spessore di 5-6 m;
- l'orizzonte 3 è stato intercettato immediatamente al di sotto dell'orizzonte 1 in corrispondenza del terrazzo più antico (PZ12) mentre al di sotto dell'ex cotonificio (terrazzo più recente) si trova ad essere a diretto contatto con il terreno di riporto. Lo spessore di tale orizzonte non è definibile poiché tale litotipo si estende oltre il fondo foro di ciascun sondaggio esaminato.

L'analisi delle descrizioni stratigrafiche contenute nei certificati dei sondaggi proiettatati all'interno della sezione B-B' non ha permesso di individuare chiaramente l'orizzonte 2, che comunque si configura come orizzonte di passaggio tra i terreni a granulometria prevalentemente fine schematicamente raggruppati nell'orizzonte 1 con i terreni prevalentemente grossolani dell'orizzonte 3.

Collegno (TO) Gennaio 2021

-27-

8. RILIEVI PIEZOMETRICI E IDROMETRICI E MODELLI IDROGEOLOGICI

8.1 <u>Risultati delle misure piezometriche ed idrologiche e considerazioni di merito</u>

In **Allegato 3** sono riportate le tabelle con i risultati delle misure piezometriche ed idrometriche ed in particolare:

- Tabella 1 misure piezometriche (PZ1-PZ12)
- Tabella 2 misure idrometriche del livello della Dora
- Tabella 3 misure piezometriche (A1-A3)
- Tabella 4 misure piezometriche del livello di percolato (P3-P13).

In **Tabella 8.1** si riportano i dati medi dei livelli piezometrici (in quote assolute, medie, minime e massime dei piezometri PZ1-PZ6):

Piezometro Profondità Tratto finestrato	Quota assoluta testa pozzo (m slm)	Livello piezometrico medio (m slm)	Livello piezometrico minimo (m slm)	Livello piezometrico massimo (m slm)
PZ1 (10 m) (2-9 m)	293,18	288,54	287,85	289,40
PZ2 (10 m) (2-9 m)	293,44	287,97	287,44	288,60
PZ3 (10 m) (2-9 m)	293,37	287,40	286,76	288,57
PZ4 (12 m) (2- 12 m)	293,55	288,49	287,68	289,45
PZ5 (12 m) (2-12 m)	293,42	288,27	286,97	289,07
PZ6 (12 m) (2-12 m)	293,34	287,23	286,14	288,02

Tabella 8.1 – Caratteristiche costruttive dei piezometri PZ1-PZ6 e livelli piezometrici misurati

L'osservazione dei livelli piezometrici misurati nei piezometri PZ1-PZ6 relativi alla zona dell'ex cotonificio e quelli dei piezometri PZ7-PZ12 realizzati nell'intorno della discarica Bruere, consentono di esprimere le seguenti considerazioni.

Le misure dei livelli idrici sotterranei nella zona dell'ex cotonificio sono fra loro correlabili e permettono di individuare una superficie piezometrica con direzione prevalente di deflusso da nord verso sud e, solo nel mese di luglio 2020 da nord-ovest verso sud-est (vds Tavole 1-9 dell'**Allegato 7**).

Le quote piezometriche medie assolute variano da a 288,54 m slm (PZ1) a 287,23 m slm (PZ6); le oscillazioni di livello sono inferiori al metro.

L'esame dei livelli piezometrici misurati nei piezometri relativi alla discarica non consente di individuare una superficie piezometrica uniforme e continua; in alcuni piezometri le misure hanno permesso di rilevare in ogni campagna di misura, battenti significativi di acqua (PZ10 nei pressi del fiume) in altri, livelli così ridotti di acqua da non consentire il prelievo di campioni (PZ8), in altri ancora (PZ7 e PZ11) variazioni di livello consistenti. Dall'interpolazione dei dati piezometrici puntuali mediante *kriging* non si è potuto ottenere un risultato coerente con il quadro idrologico ed idrogeologico del sito. Pertanto, non è stato possibile elaborare le mappe piezometriche a partire dai dati misurati complessivamente nei piezometri PZ1-PZ12.

A titolo esemplificativo, nella seguente **Tabella 8.2**, si riportano le quote piezometriche medie, minime e massime rilevate nei suddetti piezometri:

Piezometro Profondità Tratto finestrato	Quota assoluta testa pozzo (m slm)	Livello piezometrico medio (m slm)	Livello piezometrico minimo (m slm)	Livello piezometrico massimo (m slm)
PZ7 (21 m) (9-20 m)	297,09	278,74	276,40	280,73
PZ8 (25 m) (13-24 m)	304,08	279,38	279,38	281,58
PZ9 (25 m) (13-24 m)	303,93	281,42	280,75	281,71
PZ10 (25 m) (13-24 m)	303,08	291,21	290,51	291,78
PZ11 (25 m) (13-24 m)	303,65	281,96	278,65	291,75

Piezometro Profondità Tratto finestrato	Quota assoluta testa pozzo (m slm)	Livello piezometrico medio (m slm)	Livello piezometrico minimo (m slm)	Livello piezometrico massimo (m slm)
PZ12 (25 m)	305,34	284,62	284,10	285,14
(11-24 m)	303,34	204,02	204,10	203,14

Tabella 8.2 – Caratteristiche costruttive dei piezometri PZ7-PZ12 e livelli piezometrici misurati

I livelli piezometrici medi variano da 291,21 m slm in PZ10 (a nord del sito e nei pressi del fiume) a 278,74-281,42 m slm nei piezometri ad est a 281,96-284,62 m slm nei piezometri a sud-ovest.

I dati piezometrici rilevati, l'osservazione delle stratigrafie dei singoli piezometri, con strati di spessore metrico di sedimenti coesivi, evidenziano come la presenza di una falda propriamente detta secondo la definizione del D.Lgs. 152/2006 art. 54 e smi "falda acquifera: uno o più strati sotterranei di roccia o altri strati geologici di porosità e permeabilità sufficiente da consentire un flusso significativo di acque sotterranee o l'estrazione di quantità significative di acque sotterranee" non sia presente nel sottosuolo della discarica; ragionevolmente si può ipotizzare la presenza di accumuli locali di acqua con circolazione limitata negli orizzonti ghiaioso sabbiosi e direzione di deflusso variabile. Solo per il piezometro PZ10 si può ragionevolmente ipotizzare un collegamento idrogeologico con le acque della Dora. Dal confronto dei livelli di pelo libero della Dora, misurati in corrispondenza del punto ID2, con livelli piezometrici misurati nel PZ10, il gradiente locale risulta orientato dal fiume verso la falda; pertanto, si può osservare come in questo tratto il fiume Dora alimenti la falda.

Dai piezometri esistenti A1-A3 (pozzi per il monitoraggio dell'aria interstiziale) sul lato est della discarica, si rilevano quote piezometriche delle acque sotterranee dell'ordine di 297 m slm, superiori di circa 10 metri rispetto ai livelli misurati in PZ9.

Le soggiacenze nei piezometri nell'intorno della discarica (tranne per il PZ10) sono inferiori di alcuni metri (da 7 a 10 m), rispetto alle soggiacenze nei piezometri dell'ex cotonificio; per il piezometro PZ10, la soggiacenza è di circa 3 metri più alta rispetto al PZ1 dell'ex cotonificio. Il confronto fra questi due dati non consente di concludere con certezza che ci possa essere una circolazione idrica sotterranea da PZ10 verso PZ1 (distanti fra loro circa 300 m), viste le caratteristiche morfologiche del terreno.

I livelli idrici della Dora misurati sono riportati nella Tabella 2 in **Allegato 3**. In corrispondenza del ponte (nei pressi del piezometro PZ10) i livelli sono compresi fra

292,83 m slm (mese di settembre 2020) e 293,18 m slm (mese di maggio 2020). A valle dell'ex cotonificio (nei pressi del piezometro PZ6) il livello idrico varia fra 288,11 m slm e 287.51 m slm.

Confrontando tali misure con le misure piezometriche emerge come il livello del fiume sia sempre superiore ai livelli piezometrici nei piezometri più vicini ai punti di misura:

- PZ10 max 291,78 m slm Dora 293 m slm;
- PZ6 max 288,02 m slm Dora 288,10 m slm (a maggio 2020 PZ6 287,78 m slm Dora 288,10 m slm).

Le differenze di livello (oltre 1 metro) sono rilevanti a nord del sito, le differenze sono minori a sud del sito.

È quindi ragionevole presumere che a nord del sito la Dora alimenti almeno localmente la circolazione idrica sotterranea, che nella zona dell'ex cotonificio la Dora sia la principale fonte di alimentazione della falda esistente e che di fatto il fiume rappresenti una sorta di barriera idraulica per la falda stessa piuttosto che un recapito/recettore delle acque sotterranee.

Quest'ultima osservazione è supportata non solo dal confronto fra i livelli piezometrici ed il livello del fiume ma da considerazioni di natura idrologico-idraulica:

- portate del fiume (17-26 m³/s) rispetto alle portate di filtrazione dell'ordine di 1 m³/s per un fronte di filtrazione di 1000 metri ed altezza di 5 m;
- carichi idrodinamici della corrente fluviale, rispetto ai carichi idrostatici di falda.

Le misure di livello di percolato nei pozzi interni alla discarica evidenziano quote assolute comprese fra 303 e 314 m slm. L'analisi statistica dei dati permette di rilevare per ogni pozzo le differenze far valori minimi e massimi e quindi di valutare indirettamente i battenti di percolato presenti.

Il confronto fra i dati misurati fra pozzi vicini (esempio P9, P10, P11, P12) indica valori estremamente variabili da 303 a 311 m slm.

In conclusione, la situazione stratigrafica e piezometrica rilevata nell'intorno della discarica non consente di ricostruire un modello idrogeologico rappresentativo del sottosuolo della zona dell'ex discarica e determinare le relazioni idrogeologiche con l'adiacente zona dell'ex cotonificio. È invece possibile confermare il modello idrogeologico per la zona dell'ex cotonificio già descritto nell'ambito del procedimento di bonifica ex D.Lgs. 152/2006 e smi.

La conclusione conferma di fatto le considerazioni idrogeologiche sviluppate nella Relazione Geologica allegata al PRG di Alpignano richiamate nei precedenti capitoli. Analogamente sui rapporti fra idrologia del fiume Dora Riparia ed acque sotterranee, il confronto fra livelli idrici e piezometrici, le caratteristiche geologiche della zona, la possibile presenza di tratti di alveo con sedimenti cementati è possibile esprimere quanto segue:

- per la zona della discarica Bruere è difficilmente ipotizzabile una interferenza reciproca delle acque sotterranee e delle acque superficiali della Dora (ad eccezione della zona nord del piezometro PZ10), visti livelli piezometrici rispetto ai livelli idrici;
- non appare ragionevole ipotizzare un possibile deflusso di acque sotterranee dalle superfici circostanti la discarica verso la Dora;
- è confermata la correlazione fra acque sotterranee e corso del fiume in corrispondenza dell'ex cotonificio;
- l'ipotizzata interferenza nella circolazione delle acque sotterranee fra discarica ed ex cotonificio non è supportata dai rilievi piezometrici e dalle stratigrafie rilevate.

8.2 <u>Modelli idrogeologici</u>

Per studiare il flusso delle acque sotterranee si ricorre ai modelli che rappresentino il comportamento del sistema reale. Infatti, un modello è definito più semplicemente come una rappresentazione di un sistema, o un processo, reale anche se tutti i modelli sono affetti da semplificazioni, in quanto modelli.

Il modello di una falda acquifera è un utile strumento per caratterizzare la risorsa idrica sotterranea sia nella condizione di falda indisturbata sia in presenza manufatti o di variazioni delle condizioni di alimentazione che modificano il naturale deflusso sotterraneo. Un modello consente l'analisi di scenari di rischio e risanamento finalizzati all'individuazione di possibili fonti di inquinamento, nonché di probabili bersagli e vie di trasporto di un contaminante venuto in contatto con la risorsa idrica sotterranea.

Diversi sono i modelli applicabili nel campo della idrogeologia: modelli di tipo concettuale, modelli matematici (analitici e numerici), modelli fisici (i.e., colonne e serbatoi di laboratorio), modelli basati sull'analogia esistente tra flusso di corrente e flusso delle acque di falda. Migliore è lo strumento di modellazione e più attendibili risulteranno le previsioni sul comportamento del sistema. Attualmente, i più utilizzati risultano i modelli numerici. La loro ampia diffusione ha indotto a considerare l'espressione "modello delle acque sotterranee" come un sinonimo di "modelli numerici per le acque sotterranee".

La costruzione del modello numerico di una falda acquifera presuppone la conoscenza di tutte le caratteristiche geologiche e idrogeologiche dell'acquifero oggetto di studio. I prerequisiti per la modellazione numerica di una risorsa idrica sotterranea

sono la costruzione di un modello concettuale prima e matematico poi che permettano di schematizzare il problema ai suoi soli tratti essenziali, senza per questo perdere le caratteristiche di rappresentatività e verosimiglianza con la realtà. Con l'ausilio di strumenti numerici implementati in appropriati software, è possibile risolvere, in tutti i punti del dominio di interesse e nel tempo, le equazioni differenziali alle derivate parziali che governano il flusso e il trasporto all'interno degli acquiferi. Le caratteristiche geologiche del sottosuolo, quali ad esempio la stratigrafia, per le quali non può esistere una legge matematica che le rappresenti, sono ricostruite per interpolazione in tutto il dominio a partire da sondaggi puntuali.

Il codice numerico è uno strumento per risolvere le equazioni che governano il flusso ed il trasporto; questo viene poi trasformato in un modello per lo studio delle acque sotterranee attraverso l'introduzione delle caratteristiche geometriche del sito in esame e delle relative condizioni al contorno, dei parametri che caratterizzano il flusso ed il trasporto e della calibrazione e verifica del modello stesso.

Il processo di costruzione di un modello numerico prevede quindi le seguenti fasi:

- raccolta ed interpretazione di dati;
- comprensione del sistema naturale;
- costruzione del modello concettuale;
- scelta del modello numerico;
- calibrazione e validazione del modello;
- applicazione del modello;
- presentazione dei risultati.

Per assicurare una modellazione accurata, il sito analizzato deve essere correttamente caratterizzato dal punto di vista della geologia, dell'idrogeologia e delle condizioni al contorno. La fase iniziale di raccolta dati assume un ruolo fondamentale per previsioni attendibili. La qualità delle simulazioni, infatti, dipende soprattutto dalla validità del modello fisico e dalla natura dei dati di input.

Si ha quindi la necessità di conoscere un considerevole numero di sondaggi verticali che consentano la ricostruzione della stratigrafia in sezioni appartenenti all'area oggetto di studio. All'aumentare del numero di sondaggi e della profondità degli stessi aumenta il grado di conoscenza della stratigrafia del sistema naturale; in realtà è molto importante anche l'ubicazione dei sondaggi perché, per una caratterizzazione più dettagliata, è necessario che questi siano rappresentativi dell'intera zona esaminata.

Dopo aver analizzato il sistema naturale, si passa alla fase di costruzione del modello concettuale che lo rappresenta. Un modello concettuale, rappresentando una semplificazione delle condizioni geologiche e idrogeologiche reali, è in grado di descrivere gli aspetti essenziali del sistema idrogeologico. A tale scopo sono necessarie informazioni numerose ed esaustive, sia a livello geologico che idrogeologico. Il primo passo fondamentale è la caratterizzazione geologica dell'area di studio; una volta nota questa, si passa alla concettualizzazione del sistema, che consiste nel definire i confini del dominio di studio e la loro geometria, nell'individuare il regime di flusso e le formazioni geologiche con le stesse caratteristiche idrogeologiche e nel rappresentare tutti gli elementi che si comportano come ricariche o perdite rispetto alla falda. Questa fase è uno passo cruciale nel processo di modellazione perché prevede il trasferimento delle caratteristiche di un sistema reale in un modello che può essere risolto utilizzando codici numerici.

La fase di costruzione del modello concettuale è seguita dalla fase di scelta del modello numerico da utilizzare nel problema specifico. I metodi numerici applicabili sono, infatti, diversi; tra questi si ricordano i metodi agli elementi finiti, in cui il dominio viene diviso in un numero finito di elementi di forma regolare, solitamente rettangoli o triangoli, oppure i metodi alle differenze finite, che si basano sulla sovrapposizione di un reticolo al dominio analizzato e sul considerare l'equazione da risolvere scritta per ogni nodo del reticolo stesso. Le derivate parziali che compaiono nelle equazioni del flusso e del trasporto vengono approssimate con formule di derivazione numerica.

I modelli analitici, per contro, sono caratterizzati da ipotesi semplificative tali da permettere una risoluzione matematica agevole. Spesso sono utilizzati per l'analisi del trasporto dei contaminanti in falda (eg. equazione di Domenico) nel regime stazionario del flusso idrico sotterraneo, assumendo il sistema acquifero omogeneo ed isotropo.

In base al quadro idrogeologico locale riscontrato, risulta, pertanto, non applicabile al caso in esame un modello numerico di flusso delle acque sotterranee. Per la valutazione del potenziale rischio ambientale per il fiume Dora Riparia verrà utilizzato un modello analitico come descritto nel Capitolo 10.

9. CAMPIONAMENTO ED ANALISI ACQUE SUPERFICIALI E SOTTERRANEE

9.1.1 Campionamento acque sotterranee

Il campionamento delle acque è stato effettuato previa esecuzione di idoneo spurgo (con estrazione di un volume di acqua pari a 3 volte il volume del piezometro, inteso come volume interno della tubazione per la parte fessurata e del corrispondente volume di dreno) nei piezometri costruiti attorno alla discarica e nei sei piezometri esistenti nell'area dell'ex cotonificio.

È stato effettuato il campionamento di tipo dinamico con elettropompa sommersa.

Prima del campionamento è stata eseguita la misura piezometrica.

Nei piezometri con scarso o nullo battente idrico (vds PZ8 con continuità, talora in PZ7, PZ9, PZ11) non sono stati eseguiti campionamenti.

I campionamenti sono stati eseguiti con frequenza trimestrale.

Nel piezometro PZ12 è stato eseguito un solo in quanto il piezometro è stato realizzato nel mese di luglio 2020 e nel mese di novembre non è stata rilevata la presenza di acqua.

9.1.2 Campionamento acque superficiali

Sono stati eseguiti con frequenza trimestrale soprattutto in corrispondenza del ponte ed a valle dello stesso mediante campionatore manuale.

9.2 Analisi chimiche di laboratorio: risultati e limiti di riferimento

I riferimenti normativi per l'esecuzione delle analisi chimiche per le acque sono le tabelle in Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/2006 e smi ed in particolare:

- per le acque sotterranee: la Tabella 2 in Allegato 5 "Concentrazione Soglia di Contaminazione nelle acque sotterranee" (ad eccezione del parametro "azoto ammoniacale" il cui limite di riferimento sarà quello del D.Lgs. 31/2001);
- per le acque del fiume il Piano di Caratterizzazione non prevedeva limiti di riferimento. Di fatto i risultati delle analisi sono stati fra loro confrontati con il criterio "monte valle" per rilevare eventuali variazioni di qualità indotte dalla presenza della discarica.

I risultati delle analisi di laboratorio relative ai campionamenti eseguiti nei mesi di febbraio, maggio, settembre, novembre 2019, febbraio, maggio, agosto, novembre 2020 (vds Tabelle 5÷12 in **Allegato 4**) sono di seguito commentati.

Per i piezometri PZ1 e PZ6 sono inoltre disponibili i dati trimestrali delle analisi eseguite nel 2018 (gennaio, aprile, luglio, novembre) (vds tabelle 13,14,15,16 in **Allegato 4**).

9.2.1 Acque sotterranee

Le analisi relative ai campionamenti nei piezometri PZ7-PZ11 mostrano quanto segue.

Nel piezometro PZ7 presenza di manganese (414-1443 μ g/l), di nichel (73-150 μ g/l), di azoto ammoniacale (6-88 mg/l) e nitroso (2000 μ g/l a maggio 2020).

Nel piezometro PZ9 presenza di azoto ammoniacale (5,5-383 mg/l), di boro (<1 a 2000 µg/l), di ferro (7,9-24000 µg/l), di manganese (265-12313 µg/l) e nichel (<0,1-142 µg/l), benzene (0,67-4,2 µg/l), 1,2-dibromoetano (0,05-0,14 µg/l).

Nel piezometro PZ10 presenza di ferro (180-1400 μ g/l), di manganese (50-2000 μ g/ con concentrazione costante nel 2020 di circa 2000 μ g/l), di nichel (3,8-160 μ g/l con valori di 47 μ g/l negli ultimi due campionamenti del 2020).

Nel piezometro PZ12 presenza di ammoniaca (66 μ g/l), di manganese (2000 μ g/l), di nichel (350 μ g/l).

Il piezometro PZ9, posto in prossimità del settore "vecchio di discarica", e con quote piezometriche medie di 281 m slm è quello che evidenzia il maggiore numero di contaminanti (azoto ammoniacale, boro, ferro, manganese, nichel, benzene, dibrometano) con concentrazioni superiori ai limiti di legge.

Il piezometro PZ10, il più vicino al corso del fiume, è prossimo alla zona nord della discarica, dista 115 m dal piezometro PZ9 e presenta quote piezometriche medie di 291 m slm, evidenzia contaminazione da ferro, manganese e nichel; il boro è presente in concentrazioni pari a circa 1/10 del valore limite di 1000 µg/l.

Il piezometro PZ7, posto a sud- est della discarica in prossimità del margine della zona impermeabilizzata e coltivata negli anni più recenti, fra la discarica e la zona dell'ex cotonificio, dista dal piezometro PZ9 320 m, ha quote piezometriche medie di 278 m slm, variabili da 276 a 280 m slm; ha contaminazione da manganese, nichel, azoto ammoniacale e azoto nitroso in concentrazione mediamente inferiori rispetto a quanto riscontrato in PZ9.

La variabilità dei valori di concentrazione dei parametri sopra elencati non sembra essere correlata alle stagioni, l'andamento delle concentrazioni dei diversi parametri non sono fra loro sovrapponibili. Non si evidenziano particolari correlazioni fra i valori di concentrazione rilevati nei diversi piezometri con ogni probabilità dovuti alla complessa situazione idrogeologica ed all'assenza di una vera e propria falda nella zona della ex discarica.

Nel piezometro PZ8 e PZ11 non sono stati eseguiti campionamenti per persistente assenza di acqua.

Le analisi relative ai piezometri PZ1-PZ6 confermano quanto rilevato nell'ambito della caratterizzazione dell'ex cotonificio in particolare con persistente contaminazione da ammoniaca, manganese, nichel e ferro in PZ4, ammoniaca, manganese e nichel in PZ5, con valori variabili ma tendenti alla diminuzione (confronto 2018-2019-2020), conformità ai limiti di legge in PZ6 (piezometro di valle) e PZ3 (valori del 2020), saltuaria contaminazione in PZ1 (manganese), PZ2 (ferro, manganese e nichel).

Si ricorda come i livelli piezometrici rilevati siano omogenee per i piezometri PZ1, PZ2, PZ4, PZ5, PZ6 (dell'ordine di 287-288 m slm), mentre le soggiacenze medie di PZ7, PZ9 e PZ10 siano rispettivamente di 278 m slm, 281 m slm, 291 m slm.

Analoga conclusione e tenendo conto dei diversi livelli piezometrici, può essere fatta analizzando la distribuzione delle concentrazioni di Boro nei vari piezometri nelle singole campagne di indagine e confrontando tali valori con i valori rilevati in campagne successive. Ad esempio nel mese di agosto 2020 il Boro è presente solo in PZ9 (2000 µg/l), nel mese di maggio è presente in quasi tutti i piezometri con concentrazioni decrescenti da PZ9 (1900 µg/l), PZ5 (580 µg/l), PZ7 (250 µg/l) , PZ4 (230 µg/l), PZ6 (31 µg/l), PZ1 (27 µg/l), nel mese di novembre 2020 è presente in quasi tutti i piezometri con concentrazioni decrescenti da PZ9 (1900 µg/l), PZ5 (970 µg/l), PZ7 (270 µg/l), PZ4 (200 µg/l), PZ1 (25 µg/l), PZ6 (21 µg/l).

La presenza dei contaminanti nella zona esterna alla discarica Bruere è dovuta all'attività di discarica pregressa condotta negli anni 70 e 80 anche se il fondo in argilla e le zone impermeabilizzate anche con telo in PEAD, l'assenza di una falda sotterranea continua a ridotta distanza dal fondo della discarica possono avere ridotto l'impatto.

E' ragionevole presumere che il primo settore di discarica attivato negli anni settanta, la trincea drenante perimetrale realizzata successivamente e/o i sistemi di raccolta e convogliamento percolato non siano a tenuta idraulica perfetta; per effetto delle precipitazione meteoriche sulle aree circostanti alla discarica e la produzione residua di percolato non drenato e convogliato, possano generare percorsi di filtrazione nel sottosuolo negli strati permeabili con interessamento di locali lenti sospese di acqua in particolare nella zona del piezometro PZ9

9.2.2 Acque superficiali

I risultati delle analisi delle acque superficiali, sono riportati in Tabella 17 (analisi anno 2019) e Tabella 18 (analisi anno 2020) dell'**Allegato 4**.

I risultati delle analisi delle acque superficiali evidenziano la presenza di ferro ($< 1 - 440 \,\mu\text{g/l}$) e manganese (8,6-160 $\,\mu\text{g/l}$).

Per quanto riguarda le variazioni di concentrazione dei parametri rappresentativi analizzati (ammoniaca, ferro, manganese e nichel) da monte verso valle, si osservano tendenze non uniformi; in alcuni campagne di rilevamento si rileva incremento di concentrazione per alcuni parametri da monte verso valle, in altre riduzione di concentrazione monte valle, in altre aumento da monte al ponte e successivo decremento verso valle.

Nel 2020 i valori di concentrazione più elevati sono stati riscontrati nel mese di maggio.

Si osserva inoltre la presenza di azoto ammoniacale in concentrazione inferiore a 0,5 mg/l con variazione della concentrazione variabile lungo il tratto (riduzione dal punto di campionamento di monte (3) al punto di campionamento intermedio (2) e successivo incremento al punto di campionamento di valle (1)).

Il confronto fra le concentrazioni nelle acque sotterranee e nelle acque superficiali permette di rilevare:

- ferro: concentrazioni dello stesso ordine di grandezza di quelle rilevate nelle acque sotterranee ed in particolare in corrispondenza di PZ1 concentrazione maggiore nelle acque superficiali rispetto alle acque sotterranee (170 µg/l 13 µg/l); PZ2 concentrazione minore nelle acque superficiali rispetto alle sotterranee (170 µg/l 120 µg/l); nel PZ3 concentrazione maggiore nelle acque superficiali rispetto alle acque sotterranee (180 µg/l 12 µg/l) nel mese di agosto, concentrazioni maggiori nelle acque sotterranee nel mese di settembre (270 µg/l 180 µg/l) nel mese di novembre 2020 si rileva nel piezometro PZ6 la stessa concentrazione rilevata nella acque 280 µg/l (230 µg/l in PZ3)
- manganese: concentrazioni maggiori nelle acque sotterranee rispetto alle acque superficiali e variazione della concentrazione variabile lungo il tratto (riduzione dal punto di campionamento 3 al 2 e successivo incremento dal 2 al 1 nel febbraio 2020, andamento opposto a maggio 2020, ossia aumento da 3 a 2 e decremento da 2 a 1 aumento dal punto 2 al punto 1 ad agosto e novembre 2020).

Occorre inoltre rilevare come in generale il livello della Dora misurato risulti sempre superiore ai livelli idrici dei piezometri più vicini ai punti di campionamento:

- livello della Dora in corrispondenza del ponte (ID 2) in tutte le campagne (292,80-293,17 m slm) sia superiore ai livelli piezometrici in PZ10 (290,51-291,78 m slm)
- livello della Dora nel punto di campionamento di valle (ID1) in tutte le campagne (287,49-288,10 m slm) sia superiore ai livelli piezometrici in PZ6 (286,14-288,02 m slm).

9.3 Prove in sito ed analisi di laboratorio finalizzate all'elaborazione dell'AdR

Al fine di determinare il valore sito-specifico per alcuni parametri usati nell'ambito dell'Analisi di Rischio, sono state effettuate delle specifiche prove in sito.

Nel piezometro PZ12 e nel piezometro A6bis (per il monitoraggio del biogas) sono state eseguite delle prove di permeabilità in foro (prove Lefranc) alla profondità di 4-5 m dal p.c..

I due piezometri sono ubicati nella zona sud ovest della discarica.

Il valore di conducibilità idraulica, ottenuto dall'interpretazione delle prove condotte, è risultato essere nell'intervallo 1,32·10⁻⁴ m/s e 2,24·10⁻⁴ m/s.

In **Allegato 2** è riportata la Relazione con le stratigrafie dei piezometri e con i risultati delle prove in sito.

Per quanto concerne i parametri granulometria, pH, frazione di carbonio organico, sono stati utilizzati i valori utilizzati per l'Analisi di Rischio dell'ex Cotonificio o valori di letteratura.

10. ANALISI DI RISCHIO SANITARIO AMBIENTALE

Di seguito si descrivono la metodologia ed i risultati della quantificazione del rischio sanitario-ambientale associato alla presenza nelle acque di falda del sito di sostanze rilevate in concentrazioni superiori ai limiti normativi di riferimento. Come evidenziato nel capitolo precedente, la presenza dei parametri ammoniaca, boro, ferro, manganese e nichel nelle acque di falda sottostante il sito della ex discarica è verosimilmente attribuibile a trafilamenti di percolato non intercettato dalla trincea drenante. In ottemperanza alle osservazioni formulate dalla Città Metropolitana di Torino nella lettera del 28 gennaio 2020 è stato considerato quale recettore ambientale della potenziale contaminazione il fiume Dora Riparia.

10.1 <u>Metodologia dell'Analisi di Rischio</u>

10.1.1 Criteri generali dell'Analisi di Rischio

L'elaborazione di un'Analisi di Rischio costituisce una procedura avanzata per la valutazione del grado di contaminazione di un sito e dei rischi per la salute umana e per l'ambiente circostante connessi con l'inquinamento rilevato.

L'Analisi di Rischio costituisce lo strumento più indicato per supportare le strategie di gestione della contaminazione e per quantificare i pericoli legati alla presenza di sostanze in concentrazioni superiori a quelle ammesse dalla normativa vigente.

La procedura dell'Analisi di Rischio, introdotta e in seguito standardizzata dall'*American Society for Testing and Materials* (ASTM) per la valutazione del rischio, comporta le seguenti fasi:

- definizione del Modello Concettuale (individuazione delle interazioni esistenti tra le componenti sorgenti di contaminazione, percorsi di migrazione e bersagli, che concorrono alla determinazione del potenziale rischio legato alla contaminazione);
- studio del trasporto della contaminazione dalla sorgente al punto di esposizione e determinazione delle concentrazioni del contaminante al recettore;
- calcolo del rischio;
- analisi decisionale (valutazione delle incertezze presenti nell'analisi di rischio e dell'accettabilità del rischio, calcolo delle eventuali concentrazioni massime ammissibili alla sorgente e descrizione degli eventuali interventi necessari per la gestione del sito).

La procedura di Analisi di Rischio codificata dall'ASTM nel 1995 e 1998⁽¹⁾ ed acquisita dall'Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici (ISPRA ex APAT) nel 2005⁽²⁾ prevede un approccio graduale di approfondimento, denominato *Risk-Based Corrective Action* (RBCA), articolato in tre differenti livelli di seguito descritti.

- Il primo livello (*Tier 1*) è essenzialmente costituito dal confronto tra le concentrazioni dei contaminanti rilevati nel sito e i limiti tabellari previsti che fanno riferimento a condizioni sito-generiche. L'analisi di primo livello non utilizza i parametri specifici del sito e il rischio viene calcolato mediante modelli semplificati e ipotesi molto conservative. I valori ottenuti, denominati *Risk Based Screening Levels* (RBSL), sono utilizzati come valori di screening per il sito.
- Il secondo livello (*Tier 2*) consiste in un'Analisi di Rischio elaborata con modelli analitici semplificati in cui i dati di input sono in parte ricavati da indagini ambientali condotte in campo. Per i dati non noti sono utilizzati valori riportati in letteratura o validati da studi condotti in contesti ambientali analoghi a quelli in esame. In tal caso si usano valori che massimizzano la conservatività del modello, sbilanciando così i risultati dell'analisi a favore della tutela dell'ambiente e della salute umana. L'analisi di secondo livello prevede solitamente l'analisi dei processi di trasporto della contaminazione e consente di calcolare il rischio anche al di fuori della sorgente di inquinamento. Mediante l'elaborazione di un'Analisi di Rischio di secondo livello è possibile determinare i limiti di accettabilità alla sorgente specifici per il sito, denominati *Site-Specific Target Levels* (SSTL) che possono definire gli obiettivi di bonifica di un sito contaminato.
- Il terzo livello (*Tier 3*) costituisce uno stadio maggiormente approfondito di analisi di rischio. Tale livello è caratterizzato dall'uso di strumenti di calcolo più sofisticati, costituiti da modelli numerici e stocastici per la simulazione dei fenomeni di degradazione e trasporto della contaminazione. L'esecuzione di Analisi di Rischio di terzo livello è consentita dalla disponibilità dei dati chimici, biologici e fisici specifici del sito necessari alla completa determinazione dei fenomeni di riduzione del carico di contaminante in atto nel sottosuolo. Le Analisi di Rischio di terzo livello costituiscono lo strumento di valutazione del rischio meno conservativo e maggiormente vicino alla realtà.

(1) "Standard guide for Risk Based Corrective Action Applied at Petroleum Sites - RBCA" ASTM E-1793 (1995) ASTM PS 104 (1998).

^{(2) &}quot;Criteri Metodologici per l'applicazione dell'Analisi di Rischio assoluta ai siti contaminati" APAT (rev. 0 del giugno 2005, rev. 1 del luglio 2006, rev. 2 del marzo 2008).

10.1.2 Calcolo del rischio e degli obiettivi di bonifica sito-specifici

L'Analisi di Rischio può avere un duplice obiettivo: stimare quantitativamente il rischio in termini di valutazione delle conseguenze legate a una situazione di inquinamento, oppure individuare i valori di concentrazione che costituiscono gli obiettivi di bonifica sito-specifici.

I due risultati derivano dall'applicazione della procedura secondo due distinte modalità.

La modalità diretta (*forward mode*) permette il calcolo del rischio associato al recettore esposto derivante da una sorgente a concentrazione nota. A partire dalla concentrazione della sorgente, tenendo conto dell'attenuazione dovuta ai fattori di trasporto e della tossicità delle sostanze, si valuta l'esposizione del recettore e, infine, si calcola il rischio ad esso associato.

La modalità inversa (*backward mode*) permette il calcolo della massima concentrazione alla sorgente, compatibile con un livello di rischio ritenuto accettabile per il recettore esposto. Stabilita la soglia di rischio tollerabile, si determina di conseguenza la concentrazione accettabile nel punto di esposizione e, per mezzo dei fattori di trasporto, si arriva a stimare la concentrazione accettabile in sorgente che costituisce l'obiettivo di bonifica sito-specifico.

I contaminanti sono generalmente classificati tra sostanze non cancerogene e sostanze cancerogene.

Le prime sono definite come sostanze a soglia limite; la loro assunzione al di sotto di una certa concentrazione soglia non comporta effetti negativi per la salute umana. Questa concentrazione limite viene definita dose di riferimento o *Chronic Reference Dose* (RfD) e risulta espressa in mg/(kg·giorno).

Le seconde sono definite invece sostanze senza soglia limite; la loro assunzione anche minima può generare effetti negativi sulla salute umana creando condizioni favorevoli allo sviluppo di malattie cancerogene. Poiché si assume che tale propensione aumenti in modo proporzionale con la crescita delle dosi assunte, non è quantificabile una soglia limite di pericolo. Per tali sostanze è individuato un coefficiente denominato *Slope Factor* (SF), che indica la probabilità di casi incrementali di tumore nella vita riferito ad una dose unitaria ed è espresso in (mg/(kg·giorno))⁻¹.

Il calcolo del rischio per la salute umana, associato ad una specifica modalità di esposizione e ad una singola specie chimica inquinante, comporta il calcolo delle grandezze indice di pericolo (HQ) per le sostanze non cancerogene e valori di rischio (R) per le sostanze cancerogene.

Gli HQ per le sostanze non cancerogene sono definiti come:

HQ = *Dose Assunta/Chronic Reference Dose*

ed esprimono di quanto la dose dovuta all'esposizione alla sostanza non cancerogena supera la dose tollerabile o di riferimento.

I valori di rischio per le sostanze cancerogene sono calcolati come:

$$R = Dose Assunta \cdot Slope Factor$$

e rappresentano la probabilità di casi incrementali di tumore nel corso della vita, causati dall'esposizione alla sostanza.

Il rischio cumulativo per la salute umana, associato alla presenza di una o più specie chimiche contaminanti determinato da diverse modalità d'esposizione, si calcola sommando i rischi individuali.

10.1.3 Criteri di tollerabilità del rischio

Il rischio per la salute umana⁽³⁾ associato ad una singola specie chimica, secondo quanto riportato nell'Allegato 1 al Titolo V della Parte Quarta del D.Lgs. 152/2006 come modificato dal D.Lgs. 4/08, è ritenuto accettabile se sussistono le seguenti condizioni:

- $HQ \le 1$ per sostanze non cancerogene;
- $R \le 10^{-6}$ per sostanze cancerogene.

Il rischio per la salute umana dovuto alla cumulazione di più sostanze inquinanti per una o più vie di esposizione, è ritenuto accettabile se sussistono le seguenti condizioni:

- HQ_{CUM} ≤1 per sostanze non cancerogene;
- $R_{CUM} \le 10^{-5}$ per sostanze cancerogene.

10.2 Modello Concettuale dell'Analisi di Rischio

Il Modello Concettuale del sito è stato elaborato seguendo l'approccio metodologico dell'Analisi di Rischio proposto *dall'American Society for Testing and Materials* denominato *Risk Based Corrective Action* (RBCA), metodo conforme a quanto previsto nelle prescrizioni relative all'elaborazione dei progetti di bonifica indicate nell'Allegato 2 del D.Lgs. 152/2006.

Le componenti che concorrono alla determinazione del rischio sanitario e ambientale legato al potenziale inquinamento del sottosuolo del sito sono:

- sorgenti di contaminazione (primarie e secondarie);

⁽³⁾ Nel caso di un bersaglio esposto a più di un contaminante e/o a più di una modalità di esposizione si parla di rischio cumulato, inteso come sommatoria dei rischi (per il bersaglio) imputabili a ciascun contaminate e/o modalità di esposizione.

- percorsi di migrazione e vie di esposizione;
- bersagli.

Il Modello Concettuale esplicita i legami tra le diverse componenti, permettendo di valutare la presenza delle condizioni di rischio, per la salute umana e per l'ambiente, in conseguenza del potenziale fenomeno d'inquinamento. La corretta ricostruzione del Modello Concettuale consente inoltre di valutare l'eventuale necessità di eseguire interventi mirati all'eliminazione delle sorgenti primarie e secondarie di contaminazione, all'interruzione di ogni eventuale percorso di migrazione individuato ed, infine, alla bonifica ed al ripristino ambientale del sito stesso.

10.2.1 Sorgenti di contaminazione

In sito è stata individuata quale potenziale sorgente primaria di contaminazione il percolato presente nel corpo della discarica. E' ragionevole presumere che la presenza dei contaminanti nelle acque sotterranee sia dovuta a filtrazione di percolato non intercettato dal sistema di raccolta e convogliamento.

Quale sorgente secondaria di contaminazione è stata individuata l'acqua sotterranea sottostante il sito, con presenza di diversi composti in concentrazioni superiori ai limiti normativi di riferimento.

10.2.2 Meccanismi di trasporto e vie di esposizione

La diffusione della contaminazione dalle sorgenti secondarie alle matrici ambientali circostanti può avvenire attraverso diversi percorsi di migrazione. In base alle analisi chimiche condotte sulle acque di falda e in base alle proprietà chimicofisiche delle sostanze rilevate in concentrazioni superiori alle CSC sono state individuate le seguenti componenti del Modello Concettuale.

I *potenziali percorsi di migrazione* individuati per il sito sono:

- volatilizzazione e dispersione in atmosfera delle sostanze volatili presenti nelle acque sotterranee;
- migrazione della contaminazione presente nelle acque sotterranee verso valle idrogeologica;
- migrazione della contaminazione presente nelle acque sotterranee e mescolamento con le acque superficiali del fiume Dora (in alcuni periodi dell'anno, sebbene molto brevi, quando si verifica il gradiente favorevole tra i due corpi idrici).

I potenziali recettori sono:

- *allo stato attuale*: dipendenti di CIDIU o personale di imprese incaricate da CIDIU per attività periodiche e limitate nel tempo, le acque sotterranee a vale idrogeologica del sito ed il fiume Dora;
- *in futuro*: dipendenti di CIDIU o personale di imprese incaricate da CIDIU per attività periodiche e limitate nel tempo, le acque sotterranee a valle idrogeologica del sito ed il fiume Dora.

I potenziali percorsi di esposizione individuati per il sito sono:

- inalazione dei vapori outdoor di sostanze volatili presenti nelle acque di falda.

10.3 Dati di input dell'analisi di rischio

10.3.1 Sorgenti di contaminazione e contaminanti di interesse

Come anticipato poc'anzi, è stata individuata quale sorgente secondaria di contaminazione l'acqua di falda sottostante il sito.

Tutti i composti che hanno presentato almeno un superamento della relativa CSC per le acque sotterranee nelle diverse campagne di monitoraggio svolte sono stati considerati come contaminanti di interesse.

I composti considerati sono stati suddivisi in due classi, in base alle loro proprietà chimico-fisiche e conseguente possibilità di giungere il recettore umano:

- composti volatili (sostanze organiche);
- composti non volatili (sostanze inorganiche).

Nella valutazione del rischio sanitario, in base al Modello Concettuale, sono state considerate le sostanze volatili come sostanze indice.

Nella valutazione del rischio ambientale, in base al Modello Concettuale, sono state considerate sia le sostanze volatili sia le sostanze non volatili, ovvero tutte le sostanze che hanno mostrato almeno un superamento della CSC per le acque sotterranee.

10.3.2 Parametri di input del Sito

Per i parametri di input relativi alla tessitura del suolo si è fatto riferimento cautelativamente ai valori riportati nelle linee guida APAT per l'elaborazione dell'Analisi di Rischio per la litologia "sand", ovvero la classe tessiturale più conservativa dal punto di vista della diffusione e trasporto dei contaminanti. Inoltre, tale litologia risulta coerente con quanto rilevato dall'esame visivo delle carote estratte in fase di esecuzione dei sondaggi/piezometri.

Per quanto riguarda la velocità del vento, si è fatto riferimento ai dati rappresentativi dell'area Torinese sulla base dei dati bibliografici disponibili, ricavati dalla centralina di monitoraggio dell'ARPA di Via della Consolata. Il valore di velocità del vento alla quota di 2 m dal p.c. è stato posto pari a 0,8 m/s. Tale dato è già stato utilizzato nell'ambito dell'Analisi di Rischio per l'adiacente sito dell'ex Cotonificio Valle Susa.

In assenza dei dati sito-specifici relativi alla direzione prevalente del vento, l'estensione della sorgente secondaria di contaminazione lungo la direzione prevalente del vento è stata posta pari all'estensione massima della sorgente stessa.

In base alle misure piezometriche effettuate sulla rete di monitoraggio composta dai piezometri PZ1-PZ12 e in base alle misure del livello idrico del fiume Dora, si può affermare che il fiume alimenti la risorsa idrica sotterranea e di fatto rappresenti la barriera idraulica per la falda stessa. La direzione locale del flusso idrico sotterraneo è orientata da nord verso sud (vds Tavole 1-9 in **Allegato 7**).

Il punto di conformità (POC) in cui rispettare le CSC per le acque sotterranee è stato, pertanto, posto in corrispondenza del limite di proprietà della CIDIU SpA a valle idrogeologica, in corrispondenza del piezometro PZ6. Si evidenzia come le acque sotterranee in corrispondenza del suddetto piezometro risultino conformi alle CSC.

Per la profondità del livello di falda, in relazione alle misure piezometriche condotte in sito, è stato considerato il valore minimo di soggiacenza pari a 6,92 m misurato nel settembre 2020 nel piezometro PZ7.

Il valore della conducibilità idraulica dell'acquifero è stato posto pari a 1,32·10⁻⁴ m/s, che corrisponde al valore ottenuto dalla prova di permeabilità condotta in corrispondenza del piezometro PZ12.

Un estratto dai file di simulazione contenente i parametri di input utilizzati nelle simulazioni è riportato in **Allegato 8.**

10.3.3 Caratteristiche chimico-fisiche e tossicologiche dei contaminanti

I valori scelti per le caratteristiche chimico-fisiche e tossicologiche dei contaminanti di interesse corrispondono a quanto indicato nell'ultimo aggiornamento della banca ISS-INAIL del marzo 2018, pubblicata ad aprile 2018 sul sito del Ministero dell'Ambiente.

Le proprietà chimico-fisiche e tossicologiche delle sostanze utilizzate nelle simulazioni sono riportate in **Allegato 8.**

10.4 <u>Elaborazione dell'Analisi di Rischio sanitario-ambientale e risultati delle simulazioni</u>

L'Analisi di Rischio ambientale è stata effettuata mediante il software denominato RISC Workbench, Versione 4.01 elaborato dal Lynn R. Spence e distribuito dalla Waterloo Hydrogeologic.

La metodologia implementata nel software è conforme a quanto previsto dalla normativa in vigore ed applica metodi adottati a livello internazionale (procedura *RBCA* standardizzata dall'ASTM nel 1995 e 1998) per valutare i rischi sanitari ed i rischi per le risorse idriche dovuti alla contaminazione del sottosuolo.

Il calcolo del rischio e delle CSR sito specifiche è svolto mediante l'applicazione di modelli di simulazione del trasporto e dell'esposizione dei recettori alle sostanze contaminanti.

Per il calcolo del potenziale rischio ambientale sono state svolte simulazioni in modalità diretta, considerando il percorso di migrazione in falda a valle verso il fiume Dora e il fenomeno di "mixing" con le acque superficiali. L'obiettivo delle simulazioni è di stimare le concentrazioni di ciascun contaminante attese nell'acqua del fiume, a partire dalle concentrazioni rilevate nelle acque sotterranee nel corso delle campagne di monitoraggio effettuate. Le concentrazioni nelle acque superficiali calcolate dal modello saranno confrontate con i limiti previsti dal D.Lgs. 152/2006 per la qualità dei corpi idrici superficiali (qualità delle acque idonee alla vita dei pesci salmonidi e ciprinidi) o, ove manchi il riferimento, con le relative CSC per le acque sotterranee. I limiti di riferimento per le acque superficiali utilizzati sono riassunti nella tabella seguente:

Parametro	Parametro Riferimento	
Ammoniaca totale (NH4)	Tab. 1/B, All. 2, Parte III, D.Lgs. 152/06 (acque superficiali)	1000
Nichel	Tab. 1/B, All. 2, Parte III, D Lgs. 152/06 (acque superficiali)	75
Ferro	Tab. 2, All.5, Parte IV, D.Lgs. 152/06 (acque sotterranee)	200
Manganese	Tab. 2, All.5, Parte IV, D.Lgs. 152/06 (acque sotterranee)	50
Arsenico	Tab. 2, All.5, Parte IV, D.Lgs. 152/06 (acque superficiali)	50

Parametro	Parametro Riferimento	
Boro	Tab. 2, All.5, Parte IV, D.Lgs. 152/06 (acque sotterranee)	1000
Benzene	Tab. 2, All.5, Parte IV, D.Lgs. 152/06 (acque sotterranee)	1
1,2- Dibromoetano	Tab. 2, All.5, Parte IV, D.Lgs. 152/06 (acque sotterranee)	0,001
1,2- Dicloropropano	Tab. 2, All.5, Parte IV, D.Lgs. 152/06 (acque sotterranee)	0,15

Tabella 10.1 - Limiti di accettabilità per le acque superficiali utilizzati nelle simulazioni

I parametri di sito utilizzati nelle simulazioni eseguite per il percorso di migrazione in falda e "mixing" con le acque superficiali sono riportati in seguente tabella.

Parametro	Valore assegnato	U.M.	Provenienza dato
Parametri del corso d'acqua (Dora			
Riparia)			
Distanza tra sorgente e corso d'acqua	0	m	Indagini in sito
Larghezza della sorgente lungo il fiume	500	m	Indagini in sito
Conducibilità idraulica del letto del corso d'acqua	0,001	m/s	Assunzione conservativa
Spessore dell'acquifero in corrispondenza del corso d'acqua	11	m	Tratto fenestrato piezometri
Gradiente tra acquifero e corso d'acqua	0,1	-	Assunzione conservativa
Portata del corso d'acqua	26	m ³ /s	Dato di letteratura (vds Paragrafo 2.3)
Sezione del corso d'acqua	20	m^2	Cartografia
Frazione della sezione nella quale avviene il mixing	0,5	-	Assunto

Tabella 10.2 – Dati di input usati nelle simulazioni per il recettore Fiume Dora

Si evidenzia come lo scenario adottato risulti estremamente conservativo in quanto, dalle misure del livello piezometrico e del pelo libero del fiume Dora, le acque sotterranee sottostanti l'area in esame non risultano drenate dalla Dora bensì è il fiume stesso che alimenta localmente la risorsa idrica sotterranea. Pertanto, lo scenario simulato non corrisponde ad una situazione reale bensì ad una condizione ipotetica che si potrebbe verificare per un limitato periodo del tempo.

Poiché il software RISC non permette tempi di simulazione superiori ai 100 anni, per poter raggiungere la stazionarietà del fenomeno simulato è stato eliminato il fattore ritardo dovuto al processo di adsorbimento/desorbimento dalla matrice solida. Perciò, è stato introdotto per tutti i contaminanti di interesse un valore di Kd pari a zero.

Le simulazioni per la valutazione del rischio sanitario associato alla contaminazione presente nelle acque sotterranee del sito sono state effettuate mediante il software RISK-NET, Versione 3.1, sviluppato dalla Rete Nazionale sulla Gestione e la Bonifica dei Siti Contaminati (RECONNET).

Le simulazioni sono state condotte:

- sia in modalità diretta, al fine di quantificare il rischio sanitario associato alla contaminazione presente nelle acque sotterranee del sito, considerando i massimi valori di concentrazione rilevati per ciascuna sostanza volatile nel corso dei monitoraggi effettuati;
- sia in modalità inversa al fine di determinare le Concentrazioni Soglia di Rischio (CSR).

Come rischio sanitario accettabile, secondo quanto stabilito dal D.Lgs. 152/06 e s.m.i., è stato considerato:

- per le sostanze non cancerogene: HI = 1 per il rischio associato alla singola sostanza e per il rischio cumulativo;
- per le sostanze cancerogene: $R = 1*10^-6$ per il rischio associato alla singola sostanza e $R = 1*10^{-5}$ per il rischio cumulativo.

Al fine di consentire la validazione dei risultati delle simulazioni da parte degli Enti di controllo, in **Allegato 6** si riportano gli estratti dai file di simulazione condotte.

10.4.1 Rischio ambientale per il recettore Dora Riparia

La quantificazione del potenziale rischio ambientale per il recettore Dora Riparia è stata condotta con il software RISC4. Le simulazioni sono state effettuate in modalità diretta e hanno permesso di calcolare la concentrazione dei diversi composti nel corpo idrico superficiale, risultanti dal mescolamento dell'acqua di falda sottostante l'area in esame con l'acqua del fiume.

Le simulazioni sono state effettuate assegnando alla sorgente nelle acque di falda le massime concentrazioni di contaminanti rilevate nel corso delle campagne di monitoraggio effettuate nei piezometri PZ7-PZ12.

Un estratto dai file di simulazione è riportato in Appendice 8.

Nella tabella seguente si riportano i risultati ottenuti.

Parametro	U.M.	Concentrazione nelle acque superficiali	Concentrazione di riferimento per la qualità delle acque superficiali
Ammoniaca totale (NH4)	mg/l	<u>13,7</u>	1
Nichel	μg/l	14,2	75
Ferro	μg/l	<u>492</u>	200
Manganese	μg/l	<u>114</u>	50
Arsenico	μg/l	0,487	50
Boro	μg/l	81,2	1000
Benzene	μg/l	0,167	1
1,2- Dibromoetano	μg/l	0,00568	0,001
1,2- Dicloropropano	μg/l	0,0241	0,15

I risultati delle simulazioni indicano che il rischio ambientale per il recettore fiume Dora Riparia, associato alle massime concentrazioni rilevate nelle acque falda nei piezometri PZ7-PZ12, potrebbe risultare non accettabile per i parametri ammoniaca, ferro, manganese e 1,2-dibromoetano qualora il fiume Dora diventasse il recapito delle acque sotterranee in corrispondenza del sito. Si evidenzia che tale condizione non sia stata rilevata nel corso dei monitoraggi condotti in sito.

10.4.2 Rischio sanitario per i fruitori del sito

La quantificazione del rischio sanitario associato alla presenza di sostanze organiche volatili nelle acque di falda sottostante in sito, in concentrazioni lievemente superiori alle corrispondenti CSC, è stata condotta con il software Risk-net 3.1 Pro.

Le simulazioni sono state effettuate in modalità diretta a partire dalle massime concentrazioni di contaminanti rilevate nel corso delle campagne di monitoraggio effettuate sulle acque di falda.

Come recettore rappresentativo è stato considerato il lavoratore. Per la dimensione della sorgente e dell'area di esposizione è stata cautelativamente considerata la massima dimensione del sito pari a 550 m. In un'ottica cautelativa, è stata considerata la soggiacenza minima misurata nei piezometri nel corso dei rilievi piezometrici, pari a 6,92 m dal piano campagna (misura del settembre 2020 nel piezometro PZ7).

Nella tabella seguente sono riportati gli esiti della simulazione condotta.

Rischio dalla Falda – recettore lavoratore								
Contaminante	Concentrazione rappresentativa della sorgente (CRS)	Solubilità (Sol)	Rischio cancerogeno (R)	Indice di pericolo (HI)				
	μg/L	μg/L	-	-				
Benzene	4,12e+0	1,79e+6	7,62e-9	9,12e-5				
Dicloropropano (1,2)	5,93e-1	2,80e+6	2,51e-10	4,75e-5				
Dibromoetano (1,2)	1,40e-1	3,91e+6	2,77e-9	1,43e-6				
Cumulato Outdoor (C	On-site)	1,06e-8	1,40e-4					

Tabella 10.3 – Sorgente falda: quantificazione del rischio sanitario in modalità diretta

I risultati riportati in tabella indicano come il rischio sanitario associato alla contaminazione da sostanze organiche volatili presenti in falda sia ampiamente accettabile per gli attuali e futuri fruitori del sito in uno scenario di esposizione di tipo industriale/commerciale. Il rischio cancerogeno cumulato è risultato pari a R=1,00E-08 (limite normativo R=1,00E-06) mentre l'indice di pericolo cumulato è risultato pari a 1,40E-04 (limite normativo H=1).

Le CSR sanitarie per la sorgente individuata nelle acque sotterranee, calcolate con le simulazioni condotte in modalità inversa, sono riportate in tabella seguente.

CSR cumulative per la Falda								
Contaminante	Concentrazione rappresentativa della sorgente (CRS)	CSR	CSC	Rischio cancerogeno (R)	Indice di pericolo (HI)			
	μg/L	μg/L	μg/L	-	-			
Benzene	4.12e+0	5.40e+2	1.00e+0	1.00e-6	1.20e-2			
Dicloropropano (1,2)	5.93e-1	2.36e+3	1.50e-1	1.00e-6	1.89e-1			
Dibromoetano (1,2)	1.40e-1	5.06e+1	1.00e-3	1.00e-6	5.19e-4			
Cumulato Outdoor (On-site) 3.00e-6 2.0								

Tabella 10.4 – CSR sanitarie per le acque sotterranee in modalità inversa

Dalla tabella si evince come le CSR sanitarie determinate risultino superiori di alcuni ordini di grandezza rispetto alle concentrazioni massime rilevate nel corso delle campagne di monitoraggio effettuate. Non si rilevano, pertanto, i superamenti delle CSR sanitarie calcolate.

10.5 Conclusioni dell'Analisi di Rischio

Al termine delle indagini ambientali svolte per la caratterizzazione del sito della ex discarica è emersa la presenza delle sostanze nelle acque di falda in concentrazioni superiori alle CSC di riferimento.

È stata elaborata l'Analisi di Rischio sanitario-ambientale finalizzata alla quantificazione del potenziale rischio per i fruitori del sito e per il fiume Dora Riparia, associato alla potenziale contaminazione riscontrata.

I risultati delle simulazioni condotte hanno mostrato l'accettabilità del rischio sanitario associato alla contaminazione da sostanze organiche volatili presenti in falda sia per gli attuali che per i futuri fruitori del sito in uno scenario di esposizione di tipo industriale/commerciale. Infatti, non si rilevano superamenti delle CSR sanitarie per le acque sotterranee.

Il rischio ambientale per il recettore individuato nel fiume Dora Riparia è stato quantificato per uno scenario ipotetico che ha considerato il deflusso delle acque sotterranee dal sito verso il fiume stesso, con successivo mescolamento del pennacchio di contaminazione con l'acqua superficiale. Il rischio ambientale per il recettore fiume Dora Riparia è risultato non accettabile per i parametri ammoniaca, ferro, manganese e 1,2-dibromoetano nel caso in cui il fiume diventi il recapito finale delle acque sotterranee in corrispondenza del sito. Si evidenzia che tale condizione non sia stata rilevata nel corso delle indagini condotte in sito. Difatti, le misure del livello piezometrico e del pelo libero del fiume Dora Riparia effettuate nel corso delle campagne di monitoraggio, hanno mostrato che il fiume Dora Riparia alimenta localmente la risorsa idrica sotterranea. Pertanto, il rischio ambientale quantificato non

rappresenta una situazione reale bensì ipotetica, che si potrebbe verificare per limitati periodi di tempo nel corso dell'anno.

La direzione di flusso delle acque sotterranee in corrispondenza del sito risulta orientata dal nord verso sud, fino al punto di conformità (POC) individuato nel piezometro PZ6, ubicato in prossimità del confine di proprietà a valle idrogeologica. Si evidenzia come le acque sotterranee in corrispondenza del POC risultino conformi alle CSC di riferimento per tutti i parametri analizzati.

11. PROPOSTE DI INTERVENTO SULLE DIVERSE MATRICI AMBIENTALI

I risultati dell'analisi di rischio, l'attuale uso del sito, le previsioni di destinazione urbanistica previste dai Piani Regolatore dei Comuni di Alpignano e di Rivoli, i vincoli tecnici ed ambientali indicati dai Piani Regolatori citati consentono di definire le proposte di intervento così articolate per la matrice terreno e per le acque sotterranee:

11.1 Terreno

Eventuali interventi sulla matrice terreno, in corrispondenza della discarica, hanno lo scopo di ridurre la filtrazione delle acque meteoriche nei rifiuti con successiva formazione di percolato.

Tale intervento permetterebbe di ridurre la quantità di acqua (percolato ed acque di scorrimento superficiale) inviate in fognatura e a depurazione.

L'intervento potrebbe comprendere una copertura monolitica sulla sommità della discarica, quasi pianeggiante ed estesa 20.000 mq circa, con adeguata baulatura al fine di facilitare lo scorrimento delle acque meteoriche impedendone la filtrazione e successivo recupero a verde. Tale copertura monolitica potrebbe essere effettuata con terre e rocce eventualmente classificate anche come rifiuti, come quella in corso presso il sito della ex discarica di Cascina Gaj.

Tale tipologia di intervento è difficilmente realizzabile sulle scarpate della discarica, ricoperte da fitta vegetazione erbacea ed arbustiva, molto acclivi per estese superfici e difficilmente accessibili soprattutto sul lato ovest.

Le acque raccolte possono essere convogliate con canalette lungo le scarpate e raccolte al piede in una canaletta con recapito da definire. Lo scarico delle acque meteoriche dovrà essere individuato in funzione delle quote altimetriche della zona.

Tale intervento richiede una adeguata programmazione in funzione dei seguenti elementi:

- aspetto economico (reperimento delle risorse per finanziare il lavoro)
- procedure tecnico amministrative inerenti i diversi livelli di progettazione previsti dalla normativa sui lavori pubblici e relative all'appalto dei lavori
- durata prevedibile dei lavori.

11.2 Acque sotterranee

Per la matrice acque sotterranee CIDIU propone la prosecuzione dei monitoraggi già avviati a partire dal 2019 su tutti i piezometri (PZ7-PZ12 e PZ1-PZ6), con analisi dei parametri fisico-chimici già oggetto di monitoraggio.

La frequenza dei campionamenti e delle analisi sarà trimestrale per un periodo di tre anni per la verifica dell'eventuale attenuazione naturale dei livelli di contaminazione.

Se durante tale periodo si dovesse verificare una riduzione significativa dei contaminanti con concentrazioni inferiori alle CSC per quattro campionamenti consecutivi, si propone la possibilità di ridurre la frequenza dei campionamenti.

Al termine del periodo di tre anni, in funzione dell'andamento delle concentrazioni dei contaminanti, CIDIU proporrà un aggiornamento del piano di monitoraggio.

11.3 Vincoli urbanistici

In aggiunta ai vincoli esistenti elencati nel Piano Regolatore di Alpignano, dovrà essere considerato il vincolo di limitazione d'uso indotto dal procedimento di bonifica in corso ai sensi del D.Lgs. 152/2006 e smi.

Il sito non avrà utilizzo diverso da quello attuale.

Gennaio 2021

Ing. Mario Vaccarone

Ordine degli Ingegneri

della Provincia di Torino n. 5743 X

INDICE	j
--------	---

1.	INTR	RODUZIONE1
2.	INQU	JADRAMENTO GEOGRAFICO, GEOLOGICO, IDROGEOLOGICO Ed
	IDRO	OGRAFICO4
	2.1	Aspetti geografici4
	2.2	Aspetti geologici ed idrogeologici5
	2.3	Aspetti idrografici9
	2.4	Proprietà del sito
3.	PIAN	
		MINISTRATIVI11
4.		DEL SUOLO14
5.		CRIZIONE DELLA DISCARICA
6.		AGINI PREVISTE NEL PIANO DI CARATTERIZZAZIONE E
		FRONTO CON LE PRESCRIZIONI AUTORIZZATIVE18
7.	INDA	AGINI ESEGUITE21
	7.1	Esecuzione dei piezometri
	7.2	Prove di permeabilità in foro
	7.3	Rilievi piezometrici ed idrometrici
	7.4	Campionamenti ed analisi delle acque sotterranee e superficiali23
	7.5	Assetto litostratigrafico a scala locale
8.		EVI PIEZOMETRICI E IDROMETRICI E MODELLI IDROGEOLOGICI
	27	
	8.1	Risultati delle misure piezometriche ed idrologiche e considerazioni di
	0.2	merito 27
0	8.2	Modelli idrogeologici
9.	Camp	pionamento ed analisi acque superficiali e sotterranee
		9.1.1 Campionamento acque sotterranee
	9.2	9.1.2 Campionamento acque superficiali
	9.2	9.2.1 Acque sotterranee
		9.2.1 Acque sotterialee 33 9.2.2 Acque superficiali 36
	9.3	Prove in sito ed analisi di laboratorio finalizzate all'elaborazione dell'AdR
	9.3	
10.	ΔΝΔ	LISI DI RISCHIO SANITARIO AMBIENTALE
10.		Metodologia dell'Analisi di Rischio
	10.1	10.1.1 Criteri generali dell'Analisi di Rischio
		10.1.2 Calcolo del rischio e degli obiettivi di bonifica sito-specifici41
		10.1.3 Criteri di tollerabilità del rischio
	10.2	Modello Concettuale dell'Analisi di Rischio
	10.2	10.2.1 Sorgenti di contaminazione

		10.2.2 Meccanismi di trasporto e vie di esposizione	43
	10.3	Dati di input dell'analisi di rischio	44
		10.3.1 Sorgenti di contaminazione e contaminanti di interesse	44
		10.3.2 Parametri di input del Sito	44
		10.3.3 Caratteristiche chimico-fisiche e tossicologiche dei contaminanti	45
	10.4	Elaborazione dell'Analisi di Rischio sanitario-ambientale e risultati de	elle
		simulazioni	46
		10.4.1 Rischio ambientale per il recettore Dora Riparia	
		10.4.2 Rischio sanitario per i fruitori del sito	
		Conclusioni dell'Analisi di Rischio	
11.		POSTE DI INTERVENTO SULLE DIVERSE MATRICI AMBIENTALI	
		Terreno	
		Acque sotterranee	
	11.3	Vincoli urbanistici	54
Alleg	ato 1	Relazione piezometri PZ7-PZ11, stratigrafie, foto cassette catalogatri	ci
Alleg		Relazione piezometro PZ12, stratigrafie, foto cassette catalogatrici	
Alleg		Tabelle misure piezometriche ed idrometriche	
Alleg		Tabelle Analisi Chimiche eseguite	
Alleg		Allegati grafici:	
Tavol	la 1 –	Individuazione intervento su ortofoto	
Tavol	la 2a -	- Individuazione Intervento su CTR 1:10.000	
Tavol	la 2b -	- Individuazione Intervento su CTP 1:5.000	
Tavol	la 3a -	- Individuazione intervento su PRGC del Comune di Alpignano	
Tavol	la 3b -	- Vincoli tecnico amministrativi da PRGC del Comune di Alpignano	
Tavol	la 4 –	Planimetria catastale	
Tavol	la 5 –	Planimetria piezometri realizzati	
Alleg	ato 6	Planimetria e sezioni stratigrafiche	
Alleg	ato 7	Piezometrie	
Alleg	ato 8	Dati ed elaborazioni dell'AdR	
Alleg	ato 9	Certificati analisi di laboratorio	

ALLEGATO 1

RELAZIONE PIEZOMETRI PZ7-PZ11, STRATIGRAFIE, FOTO CASSETTE CATALOGATRICI

MONTIGLIO POZZI

TRIVELLAZIONE POZZI - IMPIANTI SOLLEVAMENTO ACQUA

FORNITURA E REALIZZAZIONE DI Nº 6 PIEZOMETRI PER IL CAMPIONAMENTO DI ACQUA SOTTERRANEA PRESSO LA DISCARICA DIESAURITA SITA IN VIA COLLEGNO, 61 LOCALITA' BRUERE ALPIGNANO (TO)

DESCRIZIONE ATTIVITA'

I lavori di trivellazione sono stati eseguiti nel corso del mese di novembre 2018 utilizzando una perforatrice Hydra JOY 2 equipaggiata con carotiere T1, tubazioni di rivestimento, odex140.

I campioni sono stati raccolti e disposti in apposite cassette catalogatrici, in allegato è presente la documentazione fotografica di dette cassette suddivisa per piezometro. I tubi Ø 4" utilizzati per il rivestimento definitivo sono in PVC aventi le seguenti caratteristiche fisiche:

CARATTERISTICHE FISICHE	PHYSICAL CHARACTERISTICS	VALORE VALUE	UNITÀ UNIT	RIFERIMENTO REFERENCE
Peso specifico	Specific gravity	1,35 - 1,46	g/cm³	ISO 1183
Carico di snervamento a trazione	Elongation load in traction	≥ 40	Мра	EN ISO 6259
Allungamento a trazione	Elongation at traction	> 50	%	EN ISO 6259
Modulo di elasticità a trazione "E"	Traction, pressure and twisting elasticity tests "E"	3.000	Мра	EN ISO 6259
Coefficiente di dilatazione lineare	Linear expansion coefficient	0,06 - 0,08	mm / m. C°	EN 1452-6 ISO 11359-2
Conducibilità termica	Thermal conductivity	0,13	kcal / mh C°	DIN 52612
Resistenza all'urto	Shock resistance	≤ 10	%	EN 744
Resistenza alla fiamma	Fire resistance	Self estinguishing	-	÷
Temperatura di rammollimento	Softening temperature	> 80	°C	ISO 2507
Contenuto di CVM	CVM Quantity	< 1	ppm	ISO 6401

MONTIGLIO POZZI

TRIVELLAZIONE POZZI - IMPIANTI SOLLEVAMENTO ACQUA

alla base del tubo vi è un tappo di fondo, le tubazioni sono costituite da tubi con lunghezza

3 metri e sono composte, partendo dal fondo pozzo, da un tratto cieco di m 1, un tratto

microfessurato di m 11 e un tratto cieco fino a piano campagna in allegato le

stratigrafie con riportata graficamente la composizione.

Il drenaggio è stato costruito utilizzando ghiaietto rotondo di cava 3/8 fino a - m 2,00 da

piano campagna a cui è seguito un isolamento mediante riempimento di m,0,6 con

"compactonite" ovvero bentonite in pellets fornita in sacchetti e cementazione fino a piano

campagna (m 1,40) nella quale è stata anche posata la testa pozzo costituita da un

chiusino

in acciaio al carbonio Ø mm 140 verniciato in rosso lucchettabile; la sommità del tubo Ø 4"

è protetta da un ulteriore tappo tipo packer lucchettabile.

Il giorno 04 dicembre 2018 sono stati rilevati i dati relativi al posizionamento dei piezometri

tramite GPS a 72 canali, doppia frequenza, con i seguenti requisiti di precisione in modalità

cinematica:

precisione orizzontale: 10 mm ± 1 ppm;

precisione verticale: 20 mm ± 1 ppm.

Il rilievo è stato eseguito in georeferenziazione sull'elissoide internazionale WGS84, e

sistema di riferimento UTM, fuso 32N. La quota ortometrica è stata calcolata in base al

modello di geoide "Italgeo 2008".

Contemporaneamente sono state misurate tramite freatimetro le soggiacenze.

Nella sottostante tabella sono riportati i dati rilevati: per ogni piezometro vengono indicati i

dati relativi al piano campagna ovvero il piano della cementazione alla base del pozzetto di

protezione oltre ai dati relativi al bordo superiore della tubazione (senza tappo packer)

indicati in tabella come PZ__-TTP.

MONTIGLIO POZZI

TRIVELLAZIONE POZZI - IMPIANTI SOLLEVAMENTO ACQUA

	EST	NORD	Q (m s.l.m.)	soggiacenza	quota piezometrica (m s.l.m.)
PZ7	386017.72	4994176.26	297.58		
PZ7-TTP	386017.66	4994176.30	297.81	18.06	279.75
PZ8	385995.26	4994294.70	304.52		
PZ8-TTP	385995.27	4994294.78	304.70	24.70	280.00
PZ9	386015.75	4994481.90	304.40		
PZ9-TTP	386015.78	4994482.02	304.53	24.35	280.18
PZ10	386022.21	4994590.07	303.61		
PZ10-TTP	386022.26	4994590.18	303.69	12.09	291.60
PZ11	385904.65	4994168.85	304.01		
PZ11-TTP	385904.64	4994168.81	304.19	21.96	282.23
PZ12	385888.68	4994347.35	304.68		
PZ12-TTP	385888.72	4994347.43	304.90	19.92	284.98

Vinovo, 6 dicembre 2019

PZ7 PZ7 0-5

PZ7 5-10 PZ7 10-15

PZ7 15-20 PZ7 20-21

PZ8 PZ8 0-5

PZ 8 5-10 PZ 8 10-15

PZ 8 15 - 20 PZ 8 20 - 25

PZ9 PZ9 0-5

PZ 9 5-10 PZ 9 10-15

PZ 9 15-20 PZ 9 20-25

PZ 10 PZ 10 0-5

PZ 10 5-10 PZ 10 10-15

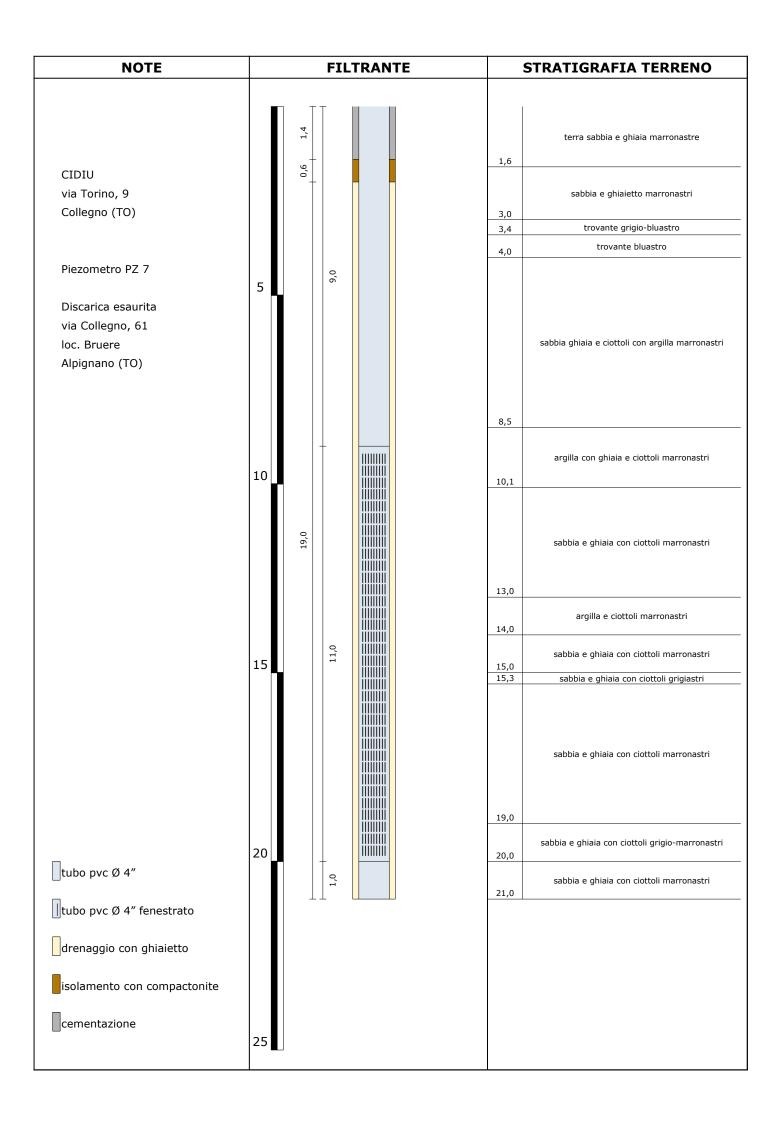
PZ 10 15-20 PZ 10 20-25

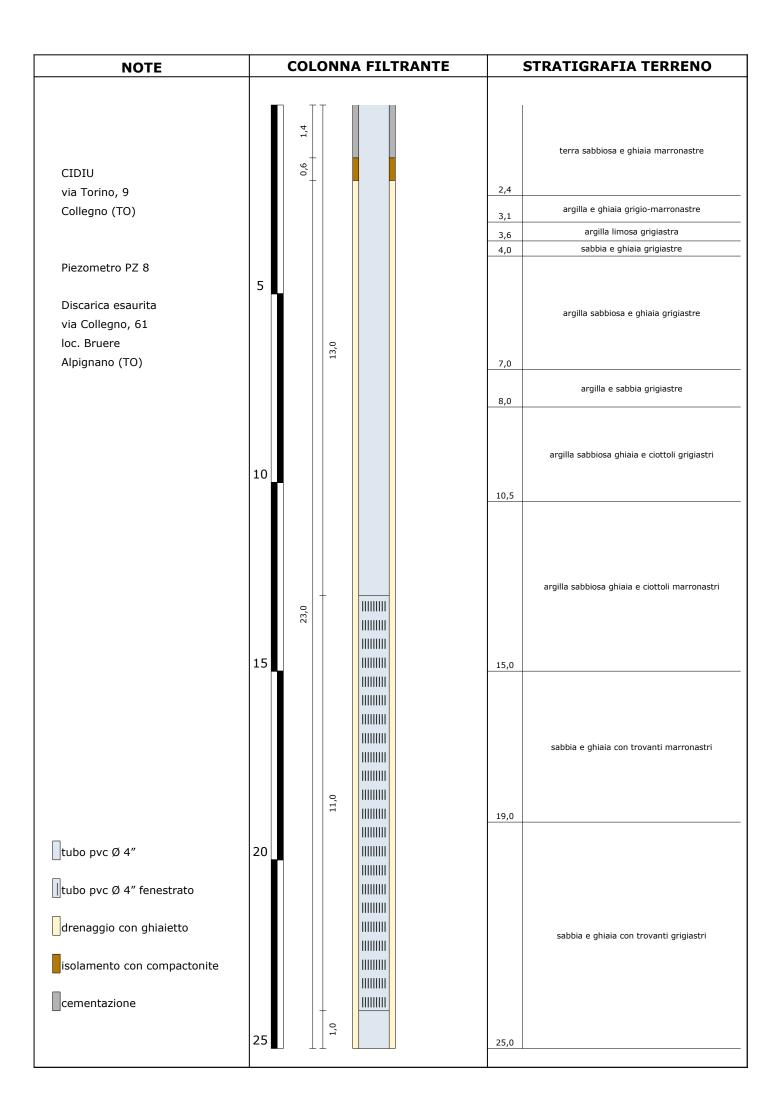
PZ 11 0-5

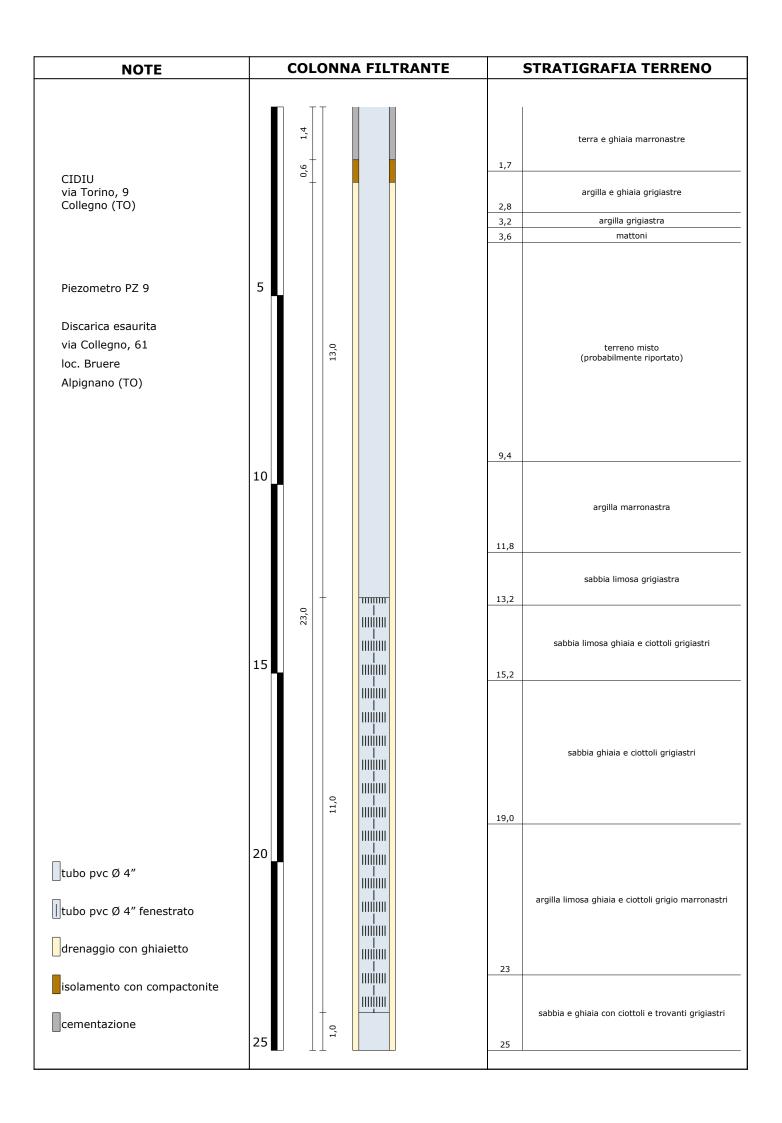
PZ 11 5-10 PZ 11 10-15

PZ 11 15 - 20 PZ 11 20 - 25

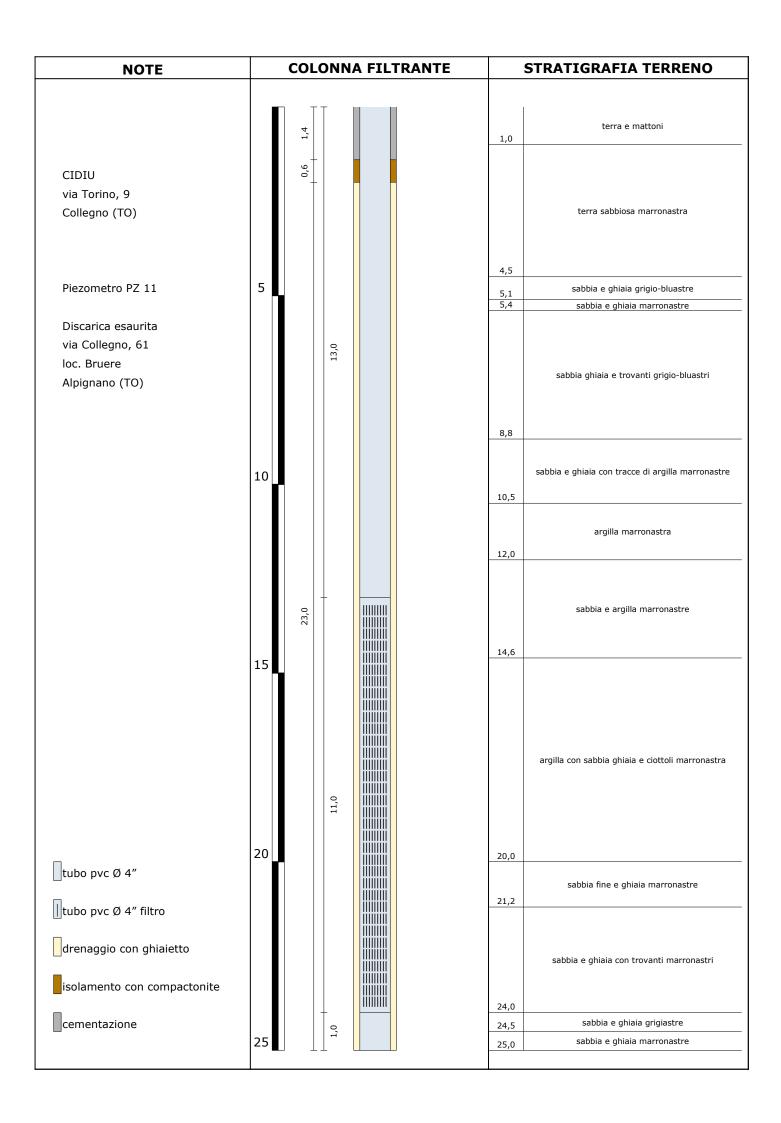
PZ 12 PZ 12 0-5




PZ 12 5-10 PZ 12 10-15






PZ 12 15-20 PZ 12 20-25

ALLEGATO 2

RELAZIONE PIEZOMETRI PZ12, A6BIS, STRATIGRAFIE, FOTO CASSETTE CATALOGATRICI

(ESTRATTO DELLA RELAZIONE PRODOTTA DALL'IMPRESA CARSICO COMPRENDENTE LE STRATIGRAFIE ANCHE DEI PIEZOMETRI PER IL MONITORAGGIO DEL BIOGAS PREVISTI DA CIDIU NON NELL'AMBITO DEL PIANO DI CARATTERIZZAZIONE)

Cidiu Servizi S.p.A.

Via Torino9 Collegno (TO)

INDAGINE GEOGNOSTICA

Cantiere di Bruere (TO)

Luglio 2020

PREMESSA

Nel periodo tra il 30/06/2020 e il 13/07/2020 sono stati effettuati lavori per la realizzazione di n 1 piezometro per il campionamento di acqua sotterranea e di n 4 pozzi di monitoraggio dell'aria interstiziale presso la discarica esaurita sita in località Bruere (TO).

Lo scopo dell'indagine è la caratterizzazione stratigrafica ed idrogeologica del sottosuolo costituente l'area finalizzata al prelevamento di campioni di terreno e l'acquisizione di dati idraulici relativi ai terreni presenti.

Per la realizzazione dell'indagine geognostica sono state impiegate due perforatrici idrauliche a rotazione e cingolate: Comacchio modello Geo 600 e Comacchio modello MC900.

Nei paragrafi seguenti verranno descritte le modalità tecniche esecutive dell'intervento.

Carsico S.r.l. Dott. C. Presta

MODALITA' TECNICHE ESECUTIVE

CARSICO S./.I. PL ORXOVIA-GODY Via Piossasco Rivalta 26 10090 Bruino (TORINO) Tol +39 0119086957 Fex +59 0116473227 cardicos italibera.it www.caraico.t

INDAGINE GEOGNOSTICA E STRUMENTAZIONE

INSTALLATA

Sono stati eseguiti 4 sondaggi (C2bis,C3bis,C5bis e A6bis) a carotaggio continuo fino alla profondità di 21m dal piano campagna, attrezzati con piezometro a tubo aperto di 2", per il monitoraggio dell'aria interstiziale ed 1 sondaggio (PZ12), sempre a carotaggio continuo fino alla profondità di 25 m da p.c., attrezzato con piezometro a tubo aperto di diam. 4", per il monitoraggio della falda.

Nei sondaggi a carotaggio continuo è stato impiegato come utensile di perforazione un carotiere semplice avente diametro di 101 e 131 mm con cui è stato possibile campionare il terreno. Successivamente si è proceduto a posizionare la carota di terreno estratta all'interno delle cassette catalogatrici (vedi allegato 1 "Foto cassette catalogatrici") e a compilare la stratigrafia (vedi allegato 2 "Stratigrafie").

La natura del terreno e la finalità dell'intervento hanno determinato la necessità di rivestire il foro: a tal scopo sono stati impiegati rivestimenti provvisori costituiti da tubi d'acciaio speciale filettati, della lunghezza di 1,5 m e del diametro di 127mm per i pozzi di monitoraggio dell'aria e 152, 178 mm per il piezometro destinato al campionamento delle acque. Durante le operazioni di posa dei rivestimenti si è reso necessario utilizzare acqua come fluido di perforazione e per il raffreddamento degli utensili.

La tubazione piezometrica è stata posta nei fori di sondaggio, all'interno del rivestimento provvisorio; durante l'operazione di estrazione di questi ultimi, è stato immesso del ghiaietto classato, con funzione di dreno, nell'intercapedine tra il foro e il tubo piezometrico, lungo il tratto

filtrante (fino 0.5 m sopra), per tutti e 5 i sondaggi. Lungo il tratto cieco è stata fatta una sigillatura con compactonite per 60 cm e cementata la restante parte fino in superficie per evitare perdite di aria per i pozzi di monitoraggio dell'aria interstiziale, mentre per il piezometro è stato cementato il tratto in profondità fino a -2.00 m da p.c., poi sigillato con compactonite per 60 cm e cementato con miscela di cemento e bentonite la restante parte, in modo tale da non avere infiltrazioni di acqua lungo la tubazione.

In seguito al completamento del piezometro è stato eseguito lo sviluppo tramite una pompa ad immersione diam 3", fino a chiarificazione dell'acqua.

10090 Bruino (TORINO)

PROVE IN SITO

Durante l'esecuzione dei sondaggi geognostici, realizzati con le perforatrici Comacchio, sono state effettuate due prove tipo Lefranc a carico costante nei sondaggi A6bis e PZ12 alla profondità di 4.5 m da p.c.

Qui di seguito sono indicate le modalità esecutive.

PROVE DI PERMEABILITÀ DI TIPO LEFRANC

Le prove Lefranc vengono effettuate nei fori di sondaggio per determinare il coefficiente di permeabilità dell'acquifero, misurando il livello piezometrico della falda dopo aver immesso dell'acqua all'interno dei tubi di perforazione.

Le prove si distinguono in due tipi:

- <u>prove Lefranc a carico variabile</u>: misurato il livello stabilizzato della falda, si provvede ad immettere acqua sino ad una quota nota, misurando successivamente -per tempi prestabiliti-l'abbassamento. La misura del livello piezometrico viene effettuata mediante un freatimetro;
- <u>prove Lefranc a carico costante</u>: il livello dell'acqua in foro viene mantenuto costante sopra il livello stabilizzato dalla falda, mediante immissione di acqua. La misura della portata in entrata viene effettuata mediante un contalitri.

La realizzazione della prova deve essere preceduta da un'accurata procedura per la preparazione della sezione filtrante:

- 1- Si esegue la perforazione con i tubi di rivestimento fino alla profondità stabilita;
- 2- Si immette all'interno dei tubi di perforazione un livello di dreno ben classato per uno spessore variabile;
- 3- Si solleva la colonna di tubi per permettere al dreno di franare nel foro e creare la tasca permeabile all'interno della formazione stratigrafica circostante;
- 4- Esecuzione della prova Lefranc.

Le prove Lefranc eseguite nei sondaggi A6bis e PZ12 alla profondità di 4.00-4.50 m dal p.c. sono state realizzate a carico costante, in Allegato 3 sono riportate le interpretazioni dei dati di campo con la determinazione della conducibilità idraulica K.

ALLEGATO 1

Foto ubicazione e cassette catalogatrici

Committente: Cidiu Servizi S.p.A. Sondaggio: A6 bis Data: 07/07-09/07/20 Riferimento:

Fotografie - Pagina 1/4 Pagina 1

Piazzola_A6bis

A6bis_cassetta n° 1 - profondità da m 0,00 a m 5,00

Committente: Cidiu Servizi S.p.A. Sondaggio: A6 bis Data: 07/07-09/07/20 Riferimento:

Fotografie - Pagina 2/4 Pagina 2

A6bis_cassetta n° 2 - profondità da m 5,00 a m 10,00

A6bis_cassetta n° 3 - profondità da m 10,00 a m 15,00

Fotografie - Pagina 3/4 Pagina 3

A6bis_cassetta n° 4 - profondità da m 15,00 a m 20,00

A6bis_cassetta n° 5 - profondità da m 20,00 a m 21,00

Fotografie - Pagina 4/4 Pagina 4

Prova Lefranc_A6bis

Prolunghe in calcestruzzo 30x30 cm_A6bis

Fotografie - Pagina 1/4 Pagina 1

PZ12_cassetta n° 1 - profondità da m 0,00 a m 5,00

PZ12_cassetta n° 2 - profondità da m 5,00 a m 10,00 $\,$

Fotografie - Pagina 2/4 Pagina 2

PZ12_cassetta n° 3 - profondità da m 10,00 a m 15,00

PZ12_cassetta n° 4 - profondità da m 15,00 a m 20,00

Fotografie - Pagina 3/4 Pagina 3

PZ12_cassetta n° 5 - profondità da m 20,00 a m 25,00

Prova tipo Lefranc_PZ12

Fotografie - Pagina 4/4 Pagina 4

Piezometro e chiusino rosso lucchettabile_PZ12

Protezione in calcastruzzo_PZ12

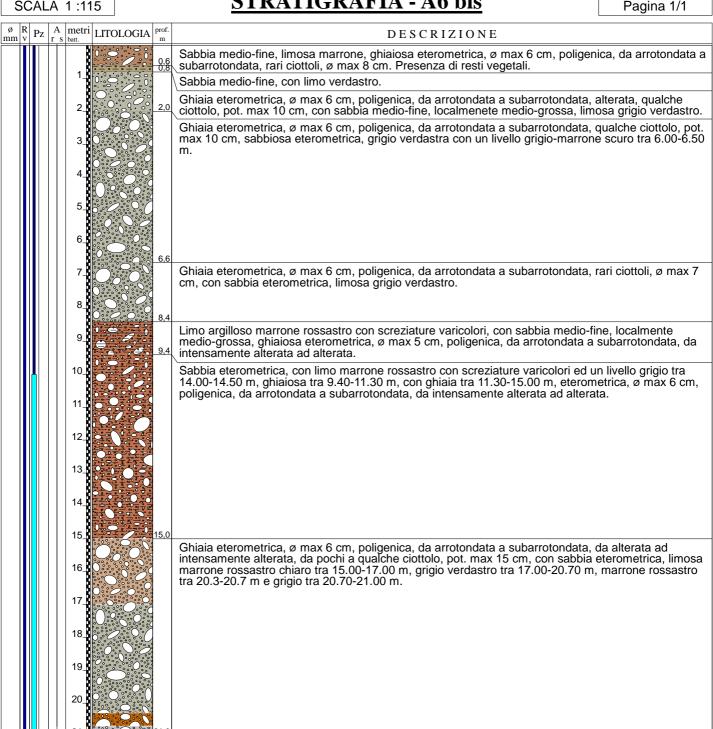
ALLEGATO 2

Stratigrafia dei sondaggi

CARSICO S. I. P.: 08207940011

Via Piossanco Rivelta 26 10090 Bruino (TORINO)

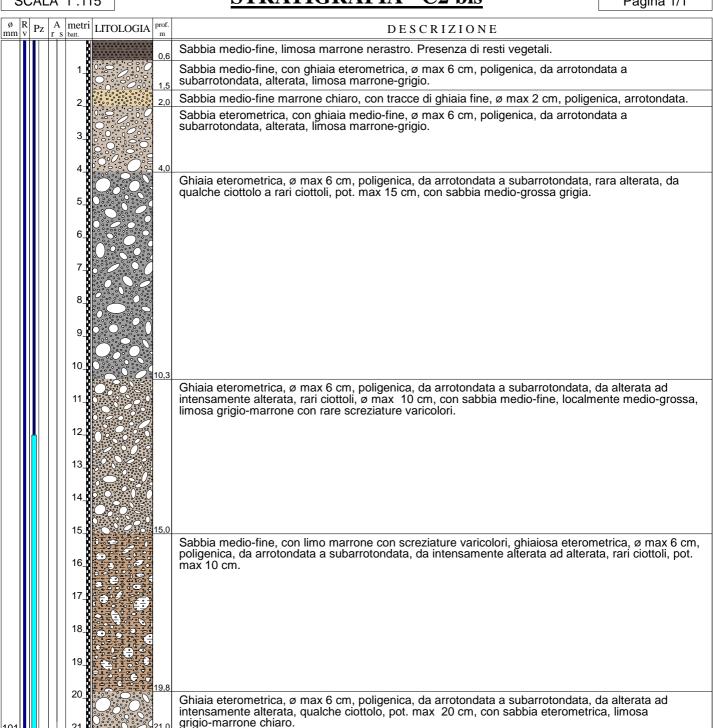
Tel -30 0110086937; Fax +39 0116473227


WWW.Carsico.it

Committente: Cidiu Servizi S.p.A.	Sondaggio: A6 bis
Riferimento:	Data: 07/07-09/07/20
Coordinate:	Quota:
Perforazione: carotaggio continuo	

STRATIGRAFIA - A6 bis

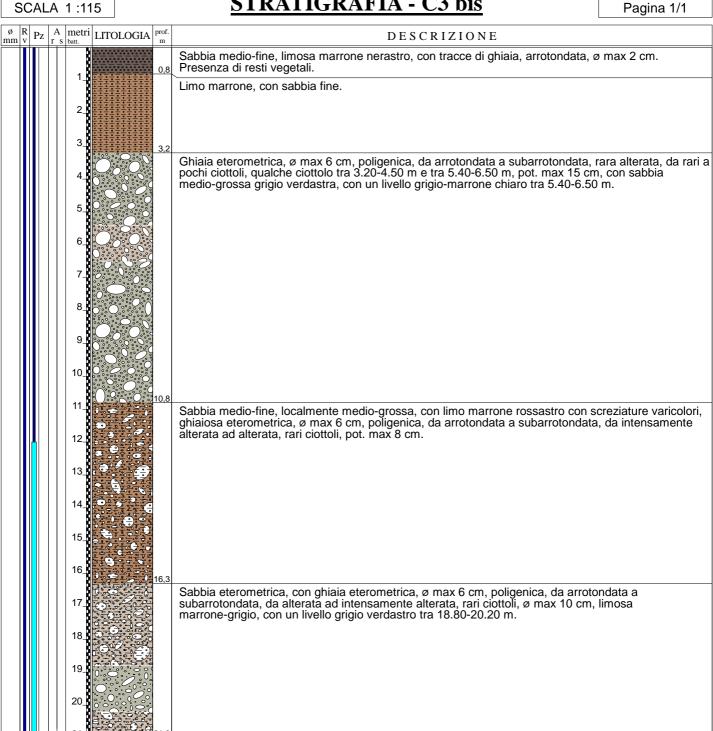
Pagina 1/1


Installato piezometro 2 pollici 21 m, fessurato 10-21 m; Installato 3 prolunghe in calcestruzzo 30x30 cm; Eseguita prova tipo Lefranc a c.c..

Committente: Cidiu Servizi S.p.A.	Sondaggio: C2 bis
Riferimento:	Data: 30/06-02/07
Coordinate:	Quota:
Perforazione: carotaggio continuo	

STRATIGRAFIA - C2 bis

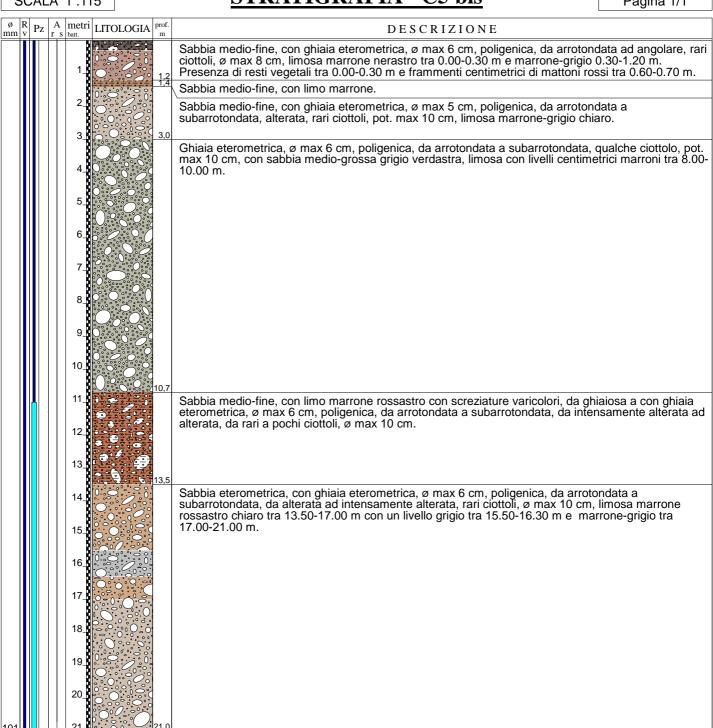
Pagina 1/1



Installato piezometro 2 pollici 21 m, fessurato 12-21 m; Installato 3 prolunghe in calcestruzzo 30x30 cm.

Committente: Cidiu Servizi S.p.A.	Sondaggio: C3 bis
Riferimento:	Data: 02/07-06/07/20
Coordinate:	Quota:
Perforazione: carotaggio continuo	

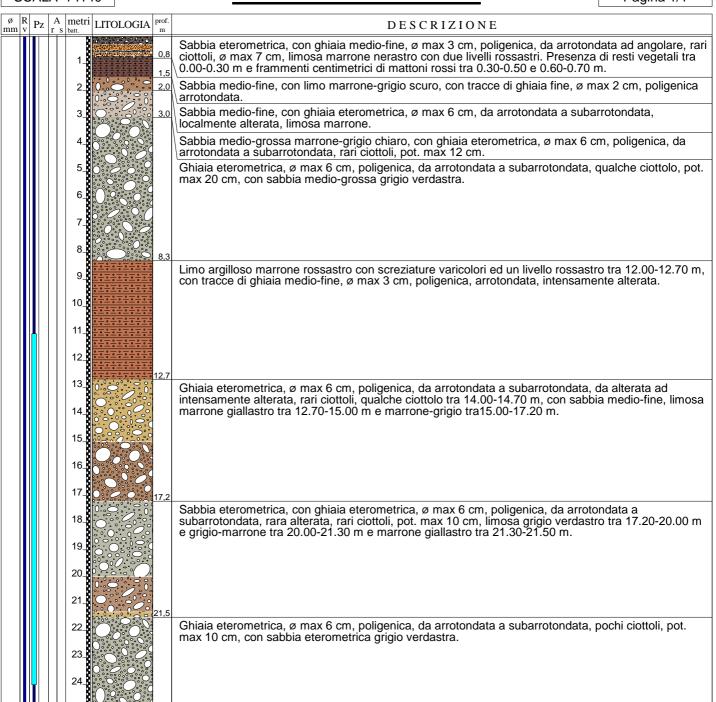
STRATIGRAFIA - C3 bis


Installato piezometro 2 pollici 21 m, fessurato 11-21 m; Installato 3 prolunghe in calcestruzzo 30x30 cm.

Committente: Cidiu Servizi S.p.A.	Sondaggio: C5 bis
Riferimento:	Data: 07/07-09/07/20
Coordinate:	Quota:
Perforazione: carotaggio continuo	

STRATIGRAFIA - C5 bis

Pagina 1/1


Installato piezometro 2 pollici 21 m, fessurato 11-21 m; Installato 3 prolunghe in calcestruzzo 30x30 cm.

Committente: Cidiu Servizi S.p.A.	Sondaggio: PZ 12
Riferimento:	Data: 09/07-13/07/20
Coordinate:	Quota:
Perforazione: carotaggio continuo	

STRATIGRAFIA - PZ 12

Pagina 1/1

Installato piezometro 4 pollici 25 m, fessurato 11-24 m;

Installato chiusino rosso lucchettabile e 3 prolunghe in cls a protezione, 50x50 cm misura interna e 25 cm di altezza; Livello falda -20.00 m da b.p. (senza prolunga in testa di 30 cm);

Eseguita prova tipo Lefranc.

ALLEGATO 3

Prove Lefranc a carico costante

CARSICO S. I. P.: 08207940011

Fax +39 01/6475227

WWW.Carsico.it

COMMITTENTE	Cidiu Servizi S.p.A
LOCALITA'	Bruere (TO)
DATA	*07/07/2020
SONDAGGIO	A6bis

PROVA DI PERMEABILITA' 1 (LIVELLO COSTANTE)

PROFONDITA' FORO DA P.C.:	Ε	4,50	
PROFONDITA' RIVESTIMENTO DA P.C.:	Ε	4,00	
SPORGENZA TUBO RIVESTIMENTO DA P.C.:	Ε	09'0	
LIVELLO BASE DI MISURA DA P.C.:	Ę	4,50	
LIVELLO DINAMICO DURANTE LA PROVA DA P.C.:	E +	09'0	
DIAMETRO DEL TRATTO DI FORO IN PROVA:	mm	152	
COEFFICIENTE DI FORMA "C": (funzione della 'tasca' di prova, in particolare del rapporto Diametro/Lunghezza)	cm	cm 160,83	

TABELLA DEI VALORI DI CAMPAGNA ED ELABORAZIONI

Letture (I)

Tempo (m)	Letture	Differ.	Portate (I/sec)	K (cm/sec)
0	585,0			
1	695,0	110,0	1,83333333	0,022350844
2	805,0	110,0	1,83333333	0,022350844
က	915,0	110,0	1,83333333	0,022350844
4	1025,0	110,0	1,83333333	0,022350844
2	1135,0	110,0	1,83333333	0,022350844
9	1245,0	110,0	1,83333333	0,022350844
00	1465,0	220,0	1,83333333	0,022350844
10	1685.0	220.0	1 833333333	0.022350844

Letture rispetto alla testa del rivestimento Dati scartati

0,0223508440

Tempo (min.)

30

27

24

21

18

15

12

6

9

က

VALORE DEL COEFFICIENTE DI PERMEABILITÀ' RICAVATO DALLA MEDIA ARITMETICA DEI VALORI RITENUTI ATTENDIBILI

Coefficiente di permeabilità relativo alla singola misurazione e calcolato mediante la

formula k=Q/C*h, ove h rappresenta il carico idraulico a regime

CARSIO AMBIENTE

K (cm/s)=

2,24E-02

CARSIGG S.1.

Via Piccensic Bivette 2E

100000 Bruing (fORIND)

P1. 0820714-0011

COMMITTENTE	Cidiu Servizi S.p.A
LOCALITA'	Bruere (TO)
DATA	09/07/2020
SONDAGGIO	PZ12

PROVA DI PERMEABILITA' 1 (LIVELLO COSTANTE)

PROFONDITA' FORO DA P.C.:	Ε	4,50	
PROFONDITA' RIVESTIMENTO DA P.C.:	Ε	4,00	
SPORGENZA TUBO RIVESTIMENTO DA P.C.:	Ε	09'0	
LIVELLO BASE DI MISURA DA P.C.:	Ę	4,50	
LIVELLO DINAMICO DURANTE LA PROVA DA P.C.:	E +	09'0	
DIAMETRO DEL TRATTO DI FORO IN PROVA:	mm	152	
COEFFICIENTE DI FORMA "C": (funzione della 'tasca' di prova, in particolare del rapporto Diametro/Lunghezza)	cm	cm 160,83	

TABELLA DEI VALORI DI CAMPAGNA ED ELABORAZIONI

Letture (I)

Tempo (m)	Letture	Differ.	Portate (I/sec)	K (cm/sec)
0	02,0			
,	0	(L		1100000000
	160,0	0,69	1,083333333	0,013207317
c	225.0	S S S S S S S S S S S S S S S S S S S	4 000000000	71000000
7	0,033	0,50	000000	0,013201311
ĸ	420.0	195.0	1 08333333	0.013207317
)				
7	550,0	130,0	1,08333333	0,013207317
6	0,089	130,0	1,08333333	0,013207317
11	810,0	130,0	1,08333333	0,013207317
13	940,0	130,0	1,08333333	0,013207317
15	1070.0	130.0	1 08333333	0.013207317

Letture rispetto alla testa del rivestimento Dati scartati

0,0132073169

Coefficiente di permeabilità relativo alla singola misurazione e calcolato mediante la formula k=Q/C*h, ove h rappresenta il carico idraulico a regime

30

27

24

21

18

12

6

9

က

Tempo (min.) 15

VALORE DEL COEFFICIENTE DI PERMEABILITÀ' RICAVATO DALLA MEDIA ARITMETICA DEI VALORI RITENUTI ATTENDIBILI

1,32E-02

K (cm/s)=

ALLEGATO 4

Ubicazione sondaggi

CARSICO S./.I. PL ORXOVIA-GODY Wa Piossasco Rivalta 26 10090 Bruino (TORINO) Tol +59 0119066957 Fex +59 0116473227 cardicos italibera.it www.caraico.it

ALLEGATO 5

Certificati di conformità

CARSICO S./.I. PL ORXOVIA-GODY Via Pióssasco Rivalta 26 10090 Bruino (TORINO) Tol +59 0119066957 Felk +59 0116473227 cardicos italibera.it www.caraico.it

DICHIARAZIONE DI CONFORMITÀ ITALIANO: versione linguistica originale

DECLARATION OF CONFORMITY ENGLISH translation of original version tanguage

OGGETTO: Macchina perforatrice semovente OBJECT: Self-propelled drill-rig machinery

La COMACCHIO sri dichiara sotto la propria responsabilità che il prodotto in oggetto: COMACCHIO sri certifies under its own responsibility that the product in object:

Tipo macchina

Machine type:

Modello:

Model

Matricola:

Serial number.

Anno di costruzione: Year of manufacture:

Potenza netta installata: Nel power installed.

Potenza acustica L_{IM} (Anguny, MON/4 CED Lye MAGNED LIN 41/17)

Acoustic power L_{vet} (Arms V, NEWLAGE)

PERFORATRICE / DRILL RIG

GEO 602

3078

2018

115 kW

102 dB(A) (Misurata/Measured) 105 dB(A) (Garantita/Guaranteed)

e conforme alle direttive. Is in conformity with the directives:

2006/42/CE

Direttiva macchine / Machine directive

2014/30/UE 2000/14/CE Compatibilità elettromagnetica / Electromagnetic compatibility
Emissioni acustiche ambientali / Noise emission in the environment

La presente dichiarazione di conformità è rilasciata sotto la responsabilità esclusiva del fabbricante. This declaration of conformity is issued under the sole responsability of the manufacturer

Persona autorizzata a costituire il fascicolo tecnico: Authorized person for constituting the technical File. Michele Piotto, via Callalta 24/B, 31039 Riese Pio X (TV)

L'equipaggiamento di lavoro sia di fornitura Comacchio o di terzi, non può essere usato sulla perforatrice senza aver provato la piena compatibilità con la stessa.

The work equipment which is supplied by Comacchio or third parties, can not be used on the drill unit without having assured the full compatibility with it.

Il Presidente / The President COMACCHIO RENZO

FORSE Pio X, 04/05/2018

DICHIARAZIONE DI CONFORMITA'

La COMACCHIO S.r.I. dichiara che il prodotto:

MACCHINA PERFORATRICE **MODELLO MC 900**

MATRICOLA:

0920

ANNO DI

2007

COSTRUZIONE:

CLIENTE:

(CARSICO)

S.R.L.

è conforme alle direttive :

- DIRETTIVA MACCHINE 98/37/CE
- DIRETTIVA EMC 89/336 CEE 92/31 CEE

E alle norme armonizzate:

EN ISO 12100-1 12100-2

Sicurezza macchine

EN ISO 12100-2 4.6 5.2.6

Stabilità

- EN 418
- Apparecchi per l'arresto di emergenza Norma generica sull'immunità - Parte 1
- EN 50081-1 EN 50082-1
- Norma generica sull'emissione Parte 1
- EN 791
- Equipaggiamento elettrico delle macchine Parte 1 : Regole generali
- EN 60204-1 Macchine perforatrici - Sicurezza

La macchina è ugualmente conforme alle disposizioni della direttiva 2000/14/CE

Too macchina: Perforatrice in accordo alla definizione nº17 dell'allegato I Dir. 2000/14/CE Procedura applicata per la valutazione della conformità: Allegato V della Dir. 2000/14/CE

Potenza netta installata:

86 kW

Livello di Potenza acustica misurata Lya-Livello di Potenza acustica garantita Lyo. 104 dB(A) 104 dB(A)

RIESE PIO X .II 24/05/2007

Il Presidente Renzo Comacchioleus

COMRCCHIO s.r.l.

Vro Colinito 24/8 - 51050 Riese PIO Z [TV] Holy - Inlatone +50 C425/7585 - Fox +50 C425/755502 F.IVR-Cod-Fis.-lest-Reg.Imps. If 02019450267 R.E.B. TV 0.60075 Copitale Sociale Cato.000,00 Liv.

Nr.01-100323 rev1

TUBO PIEZOMETRICO IN PVC Ø 2"

ARTICOLO: TUBO PVC Ø 2" PN12.5 **CODICE:** TC02"PQ125....

GIUNZIONE: BICCHIERE – LISCIO **FILETTATURA**: GAS – TRAPEZOIDALE

DIMENSIONI:		
Ø esterno	mm	60
Ø interno	mm	51.6
Spessore	mm	4.2
Peso	Kg/m	1.1
Ø est. bicchiere	mm	65
Lunghezza barre standard	m	6 - 3

RESISTENZA ALLA PRESSIONE INTERNA:				
42 MPa	1 h - 20°C	ore	> 1	UNI-EN921
35 MPa	10 h - 20°C	ore	> 100	UNI-EN921
12,5 MPa	1.000 h - 60°C	ore	> 1000	UNI-EN921

CARATTERISTICHE CHIMICHE:				
Migrazione globale PPM 12.8				
C.V.M. oggetto mg/Kg <0.05				

CARATTERISTICHE FISICHE:			
Densità	gr/cm ³	1,39 ÷ 1,45	ISO 1183
Carico di snervamento	MPa	≥ 48	ASTM D683
Allungamento allo snervamento	%	≤ 10	ASTM D683
Modulo elastico	MPa	≈ 3.000	ASTM D790
Durezza	Shore D	80 ÷ 84	ASTM D676
Coefficiente di dilatazione termica lineare	mm/m°C	~ 0,07	UNI 6061/67
Conducibilità termica	kal/h m°C	~ 0,13	DIN 526/2
Resistività elettrica	Ohm cm	> 10 ¹²	UNI 4288
VCM contenuto	ppm	< 1	ISO 6401
Tensioni longitudinali	%	≤ 5	UNI-EN743
Temperatura di rammollimento	°C	> 80	UNI-EN743
Opacità	%	≤ 2	UNI-EN727
Resistenza all'urto	%	≤ 10	UNI-EN578

Nr.01-100323 rev1

TUBO PIEZOMETRICOIN PVC Ø 4"

ARTICOLO: TUBO PVC Ø 4" PN12.5 **CODICE:** TC04"PQ125....

GIUNZIONE: BICCHIERE – LISCIO **FILETTATURA**: GAS – TRAPEZIOIDALE

DIMENSIONI:		
Ø esterno	mm	114
Ø interno	mm	103.4
Spessore	mm	5.3
Peso	Kg/m	2.9
Ø est. bicchiere	mm	120
Lunghezza barre standard	m	6 - 3

RESISTENZA ALLA PRESSIONE INTERNA:				
42 MPa	1 h - 20°C	ore	> 1	UNI-EN921
35 MPa	10 h - 20°C	ore	> 100	UNI-EN921
12,5 MPa	1.000 h - 60°C	ore	> 1000	UNI-EN921

CARATTERISTICHE CHIMICHE:				
Migrazione globale PPM 12.8				
C.V.M. oggetto mg/Kg <0.05				

CARATTERISTICHE FISICHE:			
Densità	gr/cm ³	1,39 ÷ 1,45	ISO 1183
Carico di snervamento	MPa	≥ 48	ASTM D683
Allungamento allo snervamento	%	≤ 10	ASTM D683
Modulo elastico	MPa	≈ 3.000	ASTM D790
Durezza	Shore D	80 ÷ 84	ASTM D676
Coefficiente di dilatazione termica lineare	mm/m°C	~ 0,07	UNI 6061/67
Conducibilità termica	kal/h m°C	~ 0,13	DIN 526/2
Resistività elettrica	Ohm cm	> 10 ¹²	UNI 4288
VCM contenuto	ppm	< 1	ISO 6401
Tensioni longitudinali	%	≤ 5	UNI-EN743
Temperatura di rammollimento	°C	> 80	UNI-EN743
Opacità	%	≤ 2	UNI-EN727
Resistenza all'urto	%	≤ 10	UNI-EN578

CERTIFICATO DI CONFORMITÀ

Certificate of conformity

n° 1537 / 2017 - Rev. 0

Products

Tubi di cloruro di polivinile non plastificato (PVC-U) per sistemi di tubazioni per adduzione d'acqua e per fognature e scarichi interrati e fuori terra in pressione Unplasticized polyvinyl chloride (PVC-U) pipes for piping systems for water supply and for buried and above-ground drainage and sewerage under pressure

Gamma di prodotti Range of products

vedere allegato i see annex

Norma Standard UNI EN ISO 1452-2: 2010

Nome commerciale

PLAST MEC PVC

Produttore

PLAST MEC SRL

Manufacturer Sede legale

Head office

VIA DEL SOLE, 140 - 36100 VICENZA (VI)

Sito produttivo

VIA PEPOLI 40/E - Fraz. Occhiobello - 45030 SANTA MARIA MADDALENA (RO)

Istituto Italiano dei Plastici S.r.I. (I.I.P. S.r.I.) certifica che i prodotti sopra elencati sono conformi alla norma indicata ed ai requisiti di I.I.P. S.r.I. specificati nel Regolamento generale e nelle Regole particolari applicabili. Il produttore, sottoposto a sorveglianza continua da parte di I.I.P. S.r.I., è autorizzato ad apporre sui prodotti certificati il marchio IIP-UNI con numero distintivo 212

Il presente certificato di conformità è valido (salvo modifica sospensione o revoca) fino al 31/05/2020.

Istitute Italians del Piastici S.r.I. (I.I.P. S.r.I.) certifies that the above listed products are in conformity with the indicated standard and the requirements of I.I.P. S.r.I. specified in the general Rules and in the applicable particular Rules.

The menufacturer, which is subjected to continuous surveillance by I.I.F. S.r.I. is entitled to put on the certified products the IIP-UNI conformity Mark with the distinctive number 212.

This certificate of conformity is valid (unless modification, suspension or withdrawal) until 31/05/2020.

Monza, 24/05/2017

ISTITUTO ITALIANO DEI PLASTICI S.r.I.

via Velleia 2 - 20900 Monza (MB) - www.iip.it - info@iip.it II Direttore Generale

(Madro La Ciacera)

ACCREDIA X

DICHIARAZIONE DI PRESTAZIONE n. PI3/8 01

- 1. Codice di identificazione unico del prodotto lipo: Pisello 3/8 PI3/8_01 Aggregato Grosso 4/8
- 2 Uso previsto: Aggregato per calcestruzzo
- 3. Name del Fabbricante: Escosa S.p.a

Cava: Borgata Sabbioni, 10040 La Loggia (TO) - Italia

- 5. Sistema di valutazione e verifica della costanza della prestazione del prodotto da costruzione: 2+
- 6a. Norma armonizzata: UNI EN 12620:2002 + A1:2008 Aggregati per calcestruzzo

L'organismo notificato: Organismo italiano di certificazione ed ispezione 1305 ICMQ spa

Ha rilasciato il certificato di conformità del controllo della produzione in fabbrica nº1305-CPR-0179 fondandosi sui seguenti elementi

- Ispezione iniziale dello stabilimento di produzione e del controlio della produzione in fabbrica;
- Sorveglianza, valutazione è verifica continue del controllo della produzione in fabbrica.
- 7. Prestazione dichiarata:

Caratteristiche essenziali	Prestazione	Specifica	
Forma dei Granuli		- Jacob Strategister	
Indici di appiattimento	NPO-	E# 933-4	
Indici di forma	NPD	EN 933-3	
Designazione Granulometrico	Aggregato Gresso 4/8 G-85/70	EN 933-10	
Descrizione petrografia semplificata	ghiala eterogenea metamortica	EN 932-3	
Massa volumica	Em/pM 18,5	EN 1097-6	
Assorbimento di Acqua	0,84%	EN 1097-6	
Contenuto di fini	The	EN 933-1	
Qualità dei fini		EN 933-9	
Contenuto in conchiglio	UPD	EN 933-7	
Impurezze organicho	HPD	010.25	
Resistenza alla frammentazione (Los Angeles)	(An	EN 1097-2	
Resistenza alla fevigabilità	MPO	UNI EN 1097-	
Resistenza all'abrasione	AAV 49	UNLED 1097-	
Resistenza all'usura (Micro Deval)	M ₀₁ 15	UNI EN 1092-	
Composizione / contenuto		SHERD READ	
Doniri	0.01%	1	
Solfati solubili in acide	A5 _{b.7}		
Zolfo totale	<0,02%		
Contaminanti leggeri	NPO	ER17/14-1	
Continuenti che alterano la velocità di pressi e indurimento dei calcestruzzo/maka (Determinazione sostanza lenica)	Calore soluzione più chiara dei riforimento	ENIM4-1	
Contenuto di carbonato			
Amianto e minerali nocivi	ASSENTI		
Stabilità di volume			
Ritino per essiccamento	NPD:		
Emissione di radioattività			
Rilascio di metalli pesanti	MPD		
Rilascio di Idrocarburi poliaromatici	MPD		
Rilascio di altre sestanze pericolose			
Durabilità al gelo/disgelo	fi fi	UNLEN 1367-	
Durabilità al pneumatici chiodati	MPD	3115-311-3446	
Durabilità alla reazione alcali-silice UNI EN 8520-22 (2002)	0,039%	UNITEN 6520-2	

La prestazione del prodotto sopra identificato è conforme alle prestazioni dichierate.

La présente dichiarazione di responsabilità viene emessa, in conformità al Regulamento (UE) n.305/2011, sotto la sola responsabilità del fabbricante sopra identificato...

Firmato a nome per conto del fabbricante.

Amministratore Delegato

La Loggia @ 23/11/2017

3----

Uffici:Corso Lombardia 205, 10151 TORINO Tel: 011/4551333 - Fax 011/4557397 Cava: Borgata Sabbieni, 10040 La Loggie (TO) Tel: 011/9628665 - Fax 011/9628880

05

Nome commerciale del prodotto: Pisello 3/8

Sistema: 2+

Ente di Controllo: ICMQ

Numero del Certificato CE: 1305-CPR-0179

Dichiarazione di prestazione di riferimento per uso:	PI3/8_01
	EN 12620 Aggregati per calcestruzzo
Forma dei Granuli	
Indio di appiattimento	NPD
Indici di forma	NPD
Designazione Granulometrica	Aggregato Grosso 4/8 G-85/20
Descrizione petrografia semplificata	ghiala eterogenea metamorfica
Massa volumica dei granuli	2,61 Mg/m3
Assorbimento di Acqua	D,84 16
Contenuto di fini	F13
Qualità dei fini	1960
Contenuto in conchiglie	NPD
Impurezze organiche	NPD
Resistenza alla frammentazione (Los Angeles)	LAso
Resistenza alla levigabilità	NPD
Resistenza all'abrasione superficiale	AAV 10
Resistenza all'usura (Micro Deval)	M _{0c} 15
Resistenza allo shock termico	
Composizione / contenuto	
Cloruri	<0,01%
Solfati solubili ili acido	AS _{0,2}
Zúlfo totale	<0,02%
Costituenti che alferano la velocità di presa e di indurimento del calcestruzzo/malta (Determinazione sostanza umica)	Colore soluzione più chiara del riferimento
Contenutó di carbonato	
Contaminanti leggeri	NFD
Stabilità di volume	
Ritiro per essiccamento	NPEI
Amianto e minerali nocivi	Assenti
Emissione di radioattività	
Rilascio di metalli pesanti	NPD
Rilascio di idrocarburi poliaromatici	TALES.
Rilascio di altre sostanze pericolose	
Durabilità al gelo / disgelo	Fi.
Durabilitá ai pneumatici chiodati	NPD
Durabilità alla reazione alcali-silice	0,039%

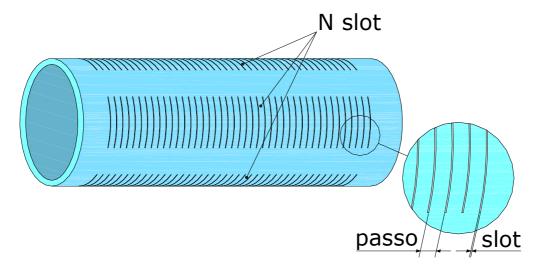
N. 01-100428 rev1

FILTRO MICROFESSURATO IN PVC Ø 2"

I filtri sono realizzati secondo gli standard previsti dalla normativa DIN 4925 apr.1999

ARTICOLO: FILTRO PVC Ø 2" PN12.5

GIUNZIONE: BICCHIERE – LISCIO



DIMENSIONI:		
Ø esterno	mm	60
Ø interno	mm	51,6
Spessore	mm	4,2
Peso	Kg/m	1,1
Ø est. bicchiere	mm	65
Lunghezza barre standard	m	3 - 6

CODICE: FM02"PQ125...

FILETTATURA: GAS-TRAPEZOIDALE

CARATTERISTICHE	STANDAR	RD:							
Slot (mm)	0,17	0,20	0,25	0,30	0,40	0,50	0,70	1,0	1,5
Open area	2,38%	2.79%	3.46%	4.11%	4,05%	4,99%	6,77%	6,48%	7,20%
n. slot (file)		4	4				3		
Passo (mm)	6,0	6,0	6,0	6,0	6,0	6,0	6,0	9,0	12,0
Portata nominale al metro (I/min)*	8,21	9,62	11,94	14,18	13,97	17,21	23,36	22,36	24,84
* Resa teorica									

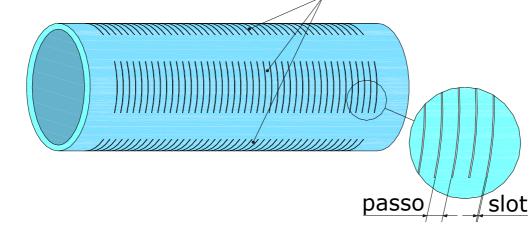
N. 01-100428 rev1

FILTRO MICROFESSURATO IN PVC Ø 4"

I filtri sono realizzati secondo gli standard previsti dalla normativa DIN 4925 apr.1999

ARTICOLO: FILTRO PVC Ø 4" PN12.5

GIUNZIONE: BICCHIERE – LISCIO



DIMENSIONI:		
Ø esterno	mm	114
Ø interno	mm	103,4
Spessore	mm	5,3
Peso	Kg/m	2,9
Ø est. bicchiere	mm	120
Lunghezza barre standard	m	3 - 6

CODICE: FM04"PQ125...

FILETTATURA: GAS-TRAPEZOIDALE

CARATTERIST	CHE ST	ANDAR	D:										
Slot (mm)	0,17	0,20	0,25	0,30	0,40	0,50	0,70	1,00	1,50	2,00	3,00	5,00	6,00
Open area %	1.83	2.15	2.66	3.17	4.16	5.12	6.95	6.65	7.39	9.50	9.50	12.79	14.78
n. slot (file)			6			3	4	3 -	- 4			4	
Passo (mm)	6,0	6,0	6,0	6,0	6,0	6,0	6,0	9,0	12,0	12,0	18,0	21,0	21,0
Portata nominale al metro (I/min)*	11.86	13.93	17.24	20.54	26.96	33.18	45.04	43.09	47.89	61.56	61.56	87.88	95.77
* Resa teorica	•					•	N	slot					

DICHIARAZIONE DI CONFORMITÀ

N°34/IT

Rilasciata da:

EJ Italia S r I = L.go Valtournanche , 7 = 00141 Roma - Italia 05/02/2016

Nome del Cliente:

TECNI.CO EDILIZIA SRL

indirizzo dal Cilente :

Via Sansovino, 50 - 10151 TORINO (TO)

"Si dichiara che i prodotti appresso elencati sono concepiti per essere conformi alla norma applicata e sono fabbricati secondo le esigenze di un sistema d'assicurazione della qualità certificato di terza parte ed in conformità alla norma EN ISO 9001 .2008."

		-
Manie	IN A SE	IDDA:
Identi		19110.

Denominazione Cilente	Τίρο	Ciassa	Certificazione
TOP200C-REVO200C	Dispositivo di chiusura	C250	KITEMARK Lic. N° 587491
TOP300C-REVO300C	Dispositivo di chiusura	C250	NF nº 13-734-734
TOP400C-REVO400C	Dispositivo di chiusura	C250	NF nº 13-735-735
TOP500C-REVOS00C	Dispositivo di chiusura	C250	NF nº 13-736-736
TOP600C-REVO600C	Dispositivo di chiusura	C250	NF n° 13-737-737
TOP700C-REVO700C	Dispositivo di chiusura	C250	KITEMARK Lic. N° 587491
TDP800C-REVO800C	Dispositivo di chiusura	C250	KITEMARK Lic. N° 587491
TOP400D-REVO400D	Dispositivo di chiusura	D400	NF nº 13-730-730
TOP500D-REVD6000	Dispositive di chiusura	D400	NF nº 13-731-731
TOP600D-REVO600D	Dispositivo di chiusura	D400	NF nº 13-728-728
TOP700D-REVO700D	Dispositivo di chiusura	D400	KITEMARK Lic. N° 587491
TOP800D-REVOS0DD	Dispositivo di chiusura	D400	KITEMARK Lic N° 587491

Norma applicata:

EN 124 : 2015 - 1 + EN 124 : 2015 - 2

ISO 1083 GHISA SFEROIDALE 500-7

UNI EN 1563 (EN GJS 500-7)

Materiale di costruzione:

GHISA SFEROIDALE 500-7

Certificazione prodotto:

marchio qualità prodotto NF, certificazioni (vedi numeri sopra indicati) rilasciate da Afnor Certification sollo denominazione prodotto EJ Picardle, come da lista prodotti certificati NF 110 VOIRIE pubblicata sul sito www.afnor.fr (http://cdn.afnor.org/download/prodults/EN/NF110.pdf) con

aggiornamento semestrale.

Rivestimento anticorrosione ; vernice idrosolubile nera.

Il Responsabile della Qualità

Claudio Plerpaoli

ALLEGATO 3 TABELLE MISURE PIEZOMETRICHE ED IDROMETRICHE

Tabella 1 Misura dei livelli piezometrici nei piezometri PZ1-PZ12

PIEZOMETRI ESTERNI	QTP (mslm)										Livelli pi	ezometrici										
prof e finestratura	da rilievo topografo	set-17	gen-18	apr-18	lug-18	nov-18	feb-19	mag-19	set-19	nov-19	dic-19	gen-20	feb-20	mar-20	apr-20	mag-20	giu-20	lug-20	ago-20	set-20	ott-20	nov-20
	12-feb-19																					
PZ1 (10 m) (2-9 m)	293,18	4,7	5,14	4,77	4,24	4,55	5,15	5,33	5,04	3,78	4,16	4,92	4,59	4,68	4,72	4,22	4,17	4,76	4,66	4,7	4,83	4,87
	293,18	288,48	288,04	288,41	288,94	288,63	288,03	287,85	288,14	289,4	289,02	288,26	288,59	288,5	288,46	288,96	289,01	288,42	288,52	288,48	288,35	288,31
PZ2 (10 m) (2-9 m)	293,44	4,84	5,71	5,5	5,34	5,58	6,00	5,10	5,82	5,05	5,37	4,88	5,62	5,66	5,81	5,34	5,27	5,82	5,77	6,39	5,67	5,7
	293,44	288,6	287,73	287,94	288,1	287,86	287,44	288,34	287,62	288,39	288,07	288,56	287,82	287,78	287,63	288,1	288,17	287,62	287,67	287,05	287,77	287,74
PZ3 (10 m) (2-9 m)	293,37	6,53	6,61	6,31	5,64	6,25	6,56	4,8	5,64	5,1	5,31	5,94	6,29	6,25	6,39	5,6	5,58	6,27	6,4	5,11	6,41	6,44
	293,37	286,84	286,76	287,06	287,73	287,12	286,81	288,57	287,73	288,27	288,06	287,43	287,08	287,12	286,98	287,77	287,79	287,1	286,97	288,26	286,96	286,93
PZ4 (12 m) (2-12 m)	293,55	5,21	5,71	5,21	4,64	4,71	5,6	5,87	5,43	4,1	4,53	4,96	5,12	5,24	5,38	4,75	4,81	4,84	5,05	5,16	5,16	5,27
	293,55	288,34	287,84	288,34	288,91	288,84	287,95	287,68	288,12	289,45	289,02	288,59	288,43	288,31	288,17	288,8	288,74	288,71	288,5	288,39	288,39	288,28
PZ5 (12 m) (2-12 m)	293,42	5,19	5,87	5,54	4,87	4,35	5,23	6,45	5,4	4,61	4,72	4,91	5,11	5,21	5,27	4,95	4,9	5,06	5,14	5,16	5,23	5,35
	293,42	288,23	287,55	287,88	288,55	289,07	288,19	286,97	288,02	288,81	288,7	288,51	288,31	288,21	288,15	288,47	288,52	288,36	288,28	288,26	288,19	288,07
PZ6 (12 m) (2-12 m)	293,34	7,2	6,97	6,22	5,87	6,15	6,49	5,95	6,71	5,32	5,62	6,07	6,05	6	6,08	5,56	5,53	6,04	6,18	6,25	6,15	6,2
	293,34	286,14	286,37	287,12	287,47	287,19	286,85	287,39	286,63	288,02	287,72	287,27	287,29	287,34	287,26	287,78	287,81	287,3	287,16	287,09	287,19	287,14
PZ7 (21 m) (9-20 m)	297,09				20,69				20,69	17,5	16,38	16,75	17,8	18,5	18,87	19,73	19,86	17,04	16,36	6,92	7,41	18,5
	297,09				276,4				276,4	279,59	280,71	280,34	279,29	278,59	278,22	277,36	277,23	280,05	280,73	290,17	289,68	278,59
PZ8 (25 m) (13-24)	304,08				24,7				24,7	22,5	23,17	23,3	24,35	24,42	24,51	23,98	24,12	24,11	24,65	24,5	24,49	24,54
	304,08				279,38				279,38	281,58	280,91	280,78	279,73	279,66	279,57	280,1	279,96	279,97	279,43	279,58	279,59	279,54
PZ9 (25 m) (13-24 m)	303,93				23,17				23,17	22,5	23,18	22,33	22,4	22,24	22,41	22,22	22,31	22,42	22,39	22,4	22,15	22,24
	303,93								280,76	281,43	280,75	281,6	281,53	281,69	281,52	281,71	281,62	281,51	281,54	281,53	281,78	281,69
PZ10 (25 m) (13-24 m)	303,08				12,5		12,57		12,5	11,3	11,51	11,77	11,8	12,02	12,33	11,4	12,01	11,95	11,83	12	11,86	9,83
	303,08				291,78		290,51		290,58	291,78	291,57	291,31	291,28	291,06	290,75	291,68	291,07	291,13	291,25	291,08	291,22	293,25
PZ11 (25 m) (13-24 m)	303,65				21,96					11,9	17,49	22,42	24,2	24,38	24,46	25	25	21,77	22,8	22,98	23,79	24,32
	303,65				281,69					291,75	286,16	281,23	279,45	279,27	279,19	278,65	278,65	281,88	280,85	280,67	279,86	279,33
PZ12 (25 m) (11-24 m)	305,34																	21,24	20,2	21,8	22,66	24,27
	305,34																	284,1	285,14	283,54	282,68	281,07

Tabella 2 Misura dei livelli idrici della Dora Riparia

Identificativo punto	Quote topografiche di riferimento																
di monitoraggio	mslm		12/02/2019	15/05/2019	05/09/2019	26/11/2019	03/12/2019	08/01/2020	26/02/2020	27/03/2020	17/04/2020	26/05/2020	29/06/2020	27/07/2020	25/08/2020	22/09/2020	03/11/2020
ID2 ponte = CFB2		Q relative		8,11	8,3	7,92			8,18	8,12	8,24	8,1	8,17	8,11	8,37	8,45	8,12
ID2 ponte = CFB2	301,28	Q assolute		293,17	292,98	293,36			293,1	293,16	293,04	293,18	293,11	293,17	292,91	292,83	293,16
ID 3 campi = CFB1		Q relative		0,54	-0,33												0,48
ID 3 campi = CFB1	293,71	Q assolute		293,17	294,04												293,23
ID1 valle = CFB3		Qrelative		1,12	1,11				1,08	1	1,12	0,582	1,18				1,2
ID1 valle = CFB3	288,69	Q assolute		287,57	287,58				287,61	287,69	287,57	288,108	287,51				287,49

ti per ragione di sicurezza dovute alle condizioni di deflusso idrico

Tabella 3 Misure livelli piezometrici nei pozzi esterni (A1-A3) del biogas

pozzi	Quota																	
biogas	assoluta	profondità																1
esterni	(mslm)	pozzo (m)	12/02/2019	15/05/2019	05/09/2019	26/11/2019	03/12/2019	08/01/2020	26/02/2020	27/03/2020	17/04/2020	26/05/2020	29/06/2020	27/07/2020	25/08/2020	22/09/2020	12/10/2020	03/11/2020
A1	304,54						7,50	6,87	6,92	6,99	7,12	6,66	6,98	6,8	6,83	7,4	6,7	6,79
	304,54						297,04	297,67	297,62	297,55	297,42	297,88	297,56	297,74	297,71	297,14	297,84	297,75
A2	304,93						7,25											
	304,93						297,68											
A3	304,14						7,1		7,1	7,31	7,41	6,12	6,52	6,49	6,81	6,92	6,91	7,06
	304,14						297,04		297,04	296,83	296,73	298,02	297,62	297,65	297,33	297,22	297,23	297,08

Tabella 4 Misure di livello del percolato

PIEZOMETRI INTERNI ALLA DISCARICA	QTP (mslm)							Livo	lli percolato) (m)						
DISCARICA	QTP (IIISIIII)							Live	ili percolato	, (111)						1
	da rilievo															
	topografo	feb-19	set-19	nov-19	dic-19	gen-19	feb-20	mar-20	apr-20	mag-20	giu-20	lug-20	ago-20	set-20	ott-20	nov-20
Р3	318	4,84	5,85	4,29	4,36	4,80	4,77	4,50	5,33	5,37	5,39	4,88	5,1	5,42	5,48	5,5
		313,16	312,15	313,71	313,64	313,20	313,23	313,50	312,67	312,63	312,61	313,12	312,90	312,58	312,52	312,50
P4	317,39	4,92	5,77	4,16	4,34	4,41	4,87	2,60	5,19				5,25	5,57	5,52	3,9
		312,47	311,62	313,23	313,05	312,98	312,52	314,79	312,2	317,39	317,39	317,39	312,14	311,82	311,87	313,49
P5	316,13	3,82	4,43	3,02	3,17	3,41	3,8	3,9	4,13	3,61	3,87	3,82	3,63	3,72	3,71	4,11
		312,31	311,70	313,11	312,96	312,72	312,33	312,23	312,00	312,52	312,26	312,31	312,50	312,41	312,42	312,02
P6	315,01	6,14	6,15	4,88	6,2	6,51	5,9	6,21	6,35	6,1	6,32	6,15	5,83	5,57	4,27	6,45
		308,87	308,86	310,13	308,81	308,50	309,11	308,80	308,66	308,91	308,69	308,86	309,18	309,44	310,74	308,56
P7	317,24	4,39	4,38	4,32	4,4	4,44	4,1	4,37	4,24	4,5	4,5	4,31	4,28	4,26	4,39	4,22
		312,85	312,86	312,92	312,84	312,80	313,14	312,87	313,00	312,74	312,74	312,93	312,96	312,98	312,85	313,02
P8	315,73	5,31	5,93	4,74	4,82	4,61	4,9	5,23	5,42	5,52	5,57	5,06	6,2	5,57	5,81	8,54
		310,42	309,80	310,99	310,91	311,12	310,83	310,50	310,31	310,21	310,16	310,67	309,53	310,16	309,92	307,19
P9	316,81	6,45	6,1	6,5	6,35	6,41	5,5	6,2	6,2	5,79	5,91	6,06	4,76	5,54	4,71	4,4
		310,36	310,71	310,31	310,46	310,40	311,31	310,61	310,61	311,02	310,9	310,75	312,05	311,27	312,1	312,41
P10	315,94	11,16	11,69	7,47	10,77	10,56	4,7	9,65	11,47	11,38	11,44	9,56	5,72	11,46	11,52	4,48
		304,78	304,25	308,47	305,17	305,38	311,24	306,29	304,47	304,56	304,5	306,38	310,22	304,48	304,42	311,46
P11	316,33	4,71	4,68	4,66	4,6	4,79	4,8	4,7	4,6	4,65	4,62	4,68	4,76	4,66	4,76	4,66
		311,62	311,65	311,67	311,73	311,54	311,53	311,63	311,73	311,68	311,71	311,65	311,57	311,67	311,57	311,67
P12 (p = 25 m)	315,57	10,63	11,32	10,03	9,8	9,84	10,2	10,62	10,17	10,8	10,97	10,09	10,45	10,7	10,85	10,95
		304,94	304,25	305,54	305,77	305,73	305,37	304,95	305,4	304,77	304,6	305,48	305,12	304,87	304,72	304,62
P13		5,46	5,99	4,75	4,73	4,45	4,34	5,42	5,6	5,64	5,72	5,28	5,49	5,73	5,97	6,02

ALLEGATO 4 TABELLE ANALISI CHIMICHE ESEGUITE

Tabella 5
Analisi acque nei piezometri (Febbraio 2019)

N ACCETTAZIONE		146765	146766	146767	146768	146769	146770	146771	146772
DATA CAMPIONAMENTO		12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019
DATA ARRIVO		12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:
ETICLIETTA				cotonificio	area Bruere ex cotonificio		area Bruere ex		
ETICHETTA		cotonificio	cotonificio	Acqua di falda	COTONITICIO	cotonificio Acqua di falda -	cotonificio	discarica	discarica Acqua di fald
		Colore	Colore	Colore	Acqua di falda	Colore	Colore		Colore
	LIMITI D. Lgs	campione:	campione:	campione:	Colore	campione:	campione:		campione:
	152/06 Acque	assente -	assente -	assente -	campione:	assente -	assente -		assente -
	sotterranee e	Torbidità:	Torbidità:	Torbidità:	assente -	Torbidità:	Torbidità:		Torbidità:
	D.Lgs 31/2001	assente -	assente -	assente -	Torbidità: lieve	presente -	assente -		assente -
	(*)	Odore:	Odore:	Odore:	- Odore:	Odore:	Odore:		Odore:
DESCRIZIONE CAMPIONE		assente	assente	assente	assente	assente	assente	Acqua di falda	assente
Parametri fisici									
(Soggiacenza falda rel. T.P.) m		5,15	6	6,56	5,16	5,23	6,49		12,57
(Profondità piezometro) m		10,2	10,79	11,12	11,15	12,04	12,27		25
(Diametro piezometro) cm		10	10	10	10	10	10		10
(Ora inizio spurgo) h		9,5	10,2	11,25	9,1	10,55	11,52		12,55
(Ora fine spurgo) h		10,02	10,32	11,37	9,25	11,12	12,07	_	13,26
(Portata spurgo) I/min		16	16	15	16	16	15	campionamento	16
(Durata spurgo) min		12	12	12	15	17	15	non eseguito	31
(Colonne spurgate) Col		4,8	5,1	5	5,1	5,1	5		5,1
(Portata campionamento) I/min		5	5	5	5	5	5		5
(Profondità campionamento) m		7	8	9	8	8	9		15
(Temperatura Ambiente) °C		4	4,8	6	4	5	6		7
(Temperatura falda) °C		14,1	13,9	12,9	14,2	14,9	13,1		12,6
Fase surnatante		assente	assente	assente	assente	assente	assente		assente
oH unità pH		7	6,9	6,9	6,8	6,8	7		7,1
Conducibilità µS/cm a 25° C		691	736	698	1020	2560	709		647
Ossigeno disciolto mg/l di O2		2,2	2	1,2	2,1	2,1	2,2		2,3
Potenziale redox mV		200	200	190	200	200	190		200
Richiesta chimica di ossigeno (ST-COD) mg O2/I		7	8,5	7,9	25	71	7,6		8,4
Azoto Ammoniacale mg NH4/I	0,5 (*)	0,029	0,08	0,75	8,5	150	1		0,36
Cloruri mg/l	0,0 ()	11	10	14	140	140	15		12
Solfati mg/l	250	160	130	160	130	73	160		140
Alluminio μg/l	200	160	17	95	33	10	170		5
Arsenico μg/l	10	<1	1,3	<1	<1	1,6	<1		2
Boro μg/l	1000	<100	<100	<100	210	650	<100		<100
Cadmio µg/l	5	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10		<0,10
Cobalto µg/l	50	<1	1,3	<1	15	19	<1		<1
Cromo μg/l	50	<2,5	<2,5	<2,5	<2,5	4	<2,5		<2,5
Ferro µg/l	200	260	390	72	150	20	150		180
Manganese μg/l	50	58	370	74	2500	1400	67		1300
Marganese μg/l Mercurio μg/l	1	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5		<0,5
Nichel µg/l	20	6,5	8,4	16	140	250	19		4,3
Piombo µg/l	10	<1	<1	<1	<1	<1	<1		<1
Rame µg/I	1000	<10	<10	<10	<10	34	<10		<10
tame μg/i Zinco μg/l	3000	<25	<25	<25	<25	25	<25		<25
Policlorobifenili (PCB) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
drocarburi Policiclici Aromatici	0,01	-0,003	-0,003	-0,003	-0,003	-0,000	٠٠,٥٥٥		~0,000
(Benzo(a)antracene) µg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005			<0,005
(Benzo(a)pirene) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(a)pirene) μg/l (Benzo(b)fluorantene (31)) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
		·		·			· · · · · · · · · · · · · · · · · · ·		<0,005
(Benzo(k)fluorantene (32)) µg/l	0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
(Benzo(g,h,i)perilene (33)) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Crisene) µg/l	5	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,h)antracene) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Indeno(1,2,3 -c,d)pirene (36)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Pirene) μg/l	50	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005

Tabella 5 Analisi acque nei piezometri (Febbraio 2019)

N ACCETTAZIONE		146765	146766	146767	146768	146769	146770	146771	146772
DATA CAMPIONAMENTO		12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019
DATA ARRIVO		12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019	12/02/2019
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:
		area Bruere ex							
ETICHETTA		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica
(Sommatoria (31,32,33,36)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Naftalene) μg/l		<0,005	<0,005	0,006	<0,005	0,068	0,0061		<0,005
(Acenaftene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Acenaftilene) μg/l		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20		<0,20
(Antracene) μg/l		<0,005	<0,005	<0,005	<0,005	0,0057	<0,005		<0,005
(Fenantrene) μg/l		<0,005	<0,005	<0,005	<0,005	0,013	<0,005		<0,005
(Fluorene) μg/l		<0,005	<0,005	<0,005	<0,005	0,013	<0,005		<0,005
(Fluorantene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(j)fluorantene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(e)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,l)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,e)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,i)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,h)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
Idrocarburi C6 - C10 espressi come n-esano μg/l		<0,10	<0,10	<0,10	<0,10	1,5	<0,10		<0,10
Indice di idrocarburi (C10 - C40) μg/l		145	<50	180	<50	<50	<50		<50
Idrocarburi totali come sommatoria delle frazioni μg/l	350	145	<50	180	<50	<50	<50		<50

Tabella 6 Analisi acque nei piezometri (Maggio 2019)

N ACCETTAZIONE		150306	150307	150308	150309	150310	150311	150312	150313
DATA CAMPIONAMENTO		15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019
DATA ARRIVO		15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:
		area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex
ETICHETTA		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica
		Acqua di falda	Acqua di falda		Acqua di falda -	Colore	Acqua di falda -		Acqua di falda
		Colore	Colore		Colore	campione:	Colore		Colore
	LIMITI D. Lgs	campione:	campione:	Acqua di falda -	campione:	presente -	campione:		campione:
	152/06 Acque	presente -	presente -	Colore	presente -	Torbidità:	presente -		assente -
	sotterranee e	Torbidità:	Torbidità:	campione:	Torbidità:	presente -	Torbidità:		Torbidità:
	D.Lgs 31/2001	presente -	presente -	assente -	presente -	Odore:	presente -		assente -
	(*)		Odore: assente		Odore: assente		Odore: assente		Odore: assente
DECORIZIONEO AMBIONE		- Campionato	- Campionato	assente -	_	Campionato da	_	A	- Campionato
DESCRIZIONECAMPIONE		da ARPA	da ARPA	Odore: assente	da ARPA	ARPA	da ARPA	Acqua di falda	da ARPA
Parametri fisici		4.07	F 7	0.54	5.07	5 50	0.04		40.00
(Soggiacenza falda rel. T.P.) m		4,87	5,7	6,51	5,27	5,58	6,31		12,36
(Profondità piezometro) m		10,2	10,8	11,31	11,14	12,03	12,26		25
(Diametro piezometro) cm		10	10	10	10	10	10	1	10
(Ora inizio spurgo) h		10,43	11,17	12,1	10,1	11,42	13,5	Non è stato	14,4
(Ora fine spurgo) h		10,59	11,32	12,24	10,24	11,58	14,04	possibile eseguire	15
(Portata spurgo) I/min		8	8	8	10	10	10	il campionamento	15
(Durata spurgo) min		16	15	14	14	16	14	a causa ' dell'assenza di	20
(Colonne spurgate) Col		3,1	3	3	3	3,2	3	acqua	3
(Portata campionamento) I/min		3	3	3	3	3	3		3
(Profondità campionamento) m		7	8	9	9	8	9	·	15
(Temperatura Ambiente) °C		17	23	20	16	21	21	·	22
(Temperatura falda) °C		11,1	11,7	11,9	11,4	12,8	10,3		11,1
Fase surnatante		assente	assente	assente	assente	assente	assente		assente
pH unità pH		7,5	6,9	8,6	6,6	6,8	7		7
Conducibilità µS/cm a 25° C		681	794	728	2560	1440	640		730
Ossigeno disciolto mg/l di O2		1,8	0,3	1,3	1,2	0	4,3		0,4
Potenziale redox mV		260	250	260	260	250	260		240
Richiesta chimica di ossigeno (ST-COD) mg O2/I		2,7	4,4	5,9	34	18	31		32
Azoto Ammoniacale mg NH4/I	0,5 (*)	0	0,039	0,52	0,52	0,52	0,0077		0,26
Cloruri mg/l		15	15	15	270	37	14		15
Solfati mg/l	250	160	140	180	140	110	170		170
Alluminio μg/l	200	31	<25	<25	<25	<25	<25		<25
Arsenico μg/l	10	<1	<1	<1	<1	<1	<1		2,8
Boro µg/l	1000	<100	9,2	33	340	280	<100		<100
Cadmio µg/l	5	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10		<0,10
Cobalto μg/l	50	<1	1,4	<1	19	13	3,1		1,2
Cromo μg/l	50	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5		<2,5
Ferro µg/l	200	43	220	9,3	39	29	17		1400
Manganese μg/l	50	100	480	90	3500	1500	1,5		1800
Mercurio µg/l	1	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		<0,50
Nichel µg/l	20	5,3	9,1	13	210	150	3,2		6,2
Piombo μg/l	10	<1	<1	<1	<1	<1	<1		<1
Rame μg/l	1000	<10	<10	<10	13	12	<10		<10
Zinco μg/l	3000	<25	<25	<25	<25	<25	54		<25
Idrocarburi Policiclici Aromatici									
(Benzo(a)antracene) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(a)pirene) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(b)fluorantene (31)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(k)fluorantene (32)) μg/l	0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(g,h,i)perilene (33)) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005

Tabella 6 Analisi acque nei piezometri (Maggio 2019)

N ACCETTAZIONE		150306	150307	150308	150309	150310	150311	150312	150313
DATA CAMPIONAMENTO		15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019
DATA ARRIVO		15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019	15/05/2019
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:
		area Bruere ex							
ETICHETTA		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica
(Crisene) μg/l	5	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,h)antracene) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Indeno(1,2,3 -c,d)pirene (36)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Pirene) μg/l	50	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Sommatoria (31,32,33,36)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Naftalene) μg/l		0,012	0,0063	0,018	0,0085	0,018	0,0071		0,011
(Acenaftene) μg/l		<0,005	0,005	0,011	<0,005	<0,005	0,013		0,0083
(Acenaftilene) μg/l		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20		<0,20
(Antracene) μg/l		<0,005	<0,005	0,0016	<0,005	<0,005	<0,005		<0,005
(Fenantrene) μg/l		0,0063	0,005	0,0038	0,015	0,013	0,011		0,0063
(Fluorene) μg/l		<0,005	<0,005	0,0048	0,007	0,011	0,013		<0,005
(Fluorantene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(j)fluorantene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Benzo(e)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,I)pirene) μg/I		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,e)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,i)pirene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
(Dibenzo(a,h)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005
Idrocarburi C6 - C10 espressi come n-esano μg/l		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10		<0,10
Indice di idrocarburi (C10 - C40) µg/l	•	1300	27,5	250	<50	62	<50		<50
Idrocarburi totali come sommatoria delle frazioni	350	1300	27,5	250	<50	62,5	<50		<50
Policlorobifenili (PCB) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005

Tabella 7
Analisi acque nei piezometri (Settembre 2019)

Campione			19SP2553-005 Pz 1 - Sito:	19SP2553-007 Pz 2 - Sito:	19SP2553-008 Pz 3 - Sito:	19SP2553-004 Pz 4 - Sito:	19SP2553-006 Pz 5 - Sito:	19SP2553-009 Pz 6 - Sito:	19SP2553-010 Pz 10 - Sito:
Punto Campionato			area Bruere ex						
Data Campionamento			05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019
		Limite D.Lgs 152/2006 acque sotterranee e D.Lgs							
Parametro	U.M.	31/2001 (*)	Valore						
Soggiacenza*	m	-	5,04	5,82	5,64	5,43	5,40	6,71	12,5
pH	pH °C	-	7,40	7,07	7,06	6,58	6,96	7,12	7,78
Temperatura Conducibilità a 20°C		-	14,4	13,7	12,7	14,5	15,2	15,0	12,3
	μS/cm	-	732	739	739	1481	2080	730	681
Ossidabilità al permanganato Alluminio	mg/l O2	200	0,2	0,5 <1,0	<0,1 <1,0	1,8	4,2 <1,0	<0,1	<0,1
Arsenico	µg/l	10	<1,0	•	,	<1,0	8,1	<1,0 3,7	<1,0 5,3
Boro	µg/l	1000	3,4 <15,0	4,4 <15,0	3,5 19,9	6,2 131	259	<15,0	5,5 <15,0
Cadmio	µg/l	5	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Cromo totale	µg/l	50	1,1	1,0	1,5	1,8	3,0	1,4	<1,0
Ferro	μg/l μg/l	200	17,1	1,0	18,5	<1,0	<1,0	34,7	862
Manganese	μg/l	50	103	295	81,1	1486	1525	1,7	1109
Mercurio		1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Nichel	μg/l μg/l	20	5,5	5,8	9,5	81,2	152	2,0	3,8
Piombo	μg/l	10	<1,0	<1,0	<1,0	<1,0	3,4	<1,0	<1,0
Rame	μg/l	1000	<1,0	<1,0	<1,0	<1,0	12,0	<1,0	<1,0
Zinco	μg/l	3000	3,6	<1,0	4,1	1,8	<1,0	<1,0	<1,0
Solfati	mg/l	250	169	77,4	158	125	131	199	152
Cloruri	mg/l	-	15,3	9,93	14,6	98,6	119	16,0	14,2
Azoto ammoniacale (come NH4)	mg/l	0,5 (*)	<0,026	0,086	0,516	7,55	22,0	<0,026	0,350
Azoto nitrico (come N)	mg/l	-	2,16	0,18	0,83	12,2	11,5	1,13	0,07
Azoto nitroso (come N)	mg/l	-	<0,03	<0,03	0,06	1,15	0,17	<0,03	<0,03
Benzene	μg/l	1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Etilbenzene	μg/l	50	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Stirene	μg/l	25	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Toluene	μg/l	15	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
p-xilene	μg/l	10	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Clorometano	μg/l	1,5	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Triclorometano	μg/l	0,15	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Cloruro di vinile	μg/l	0,5	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-dicloroetano	μg/l	3	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-dicloroetilene	μg/l	0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
Tricloroetilene	μg/l	1,5	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Tetracloroetilene	μg/l	1,1	<0,05	<0,05	<0,05	<0,05	<0,05	0,05	<0,05
Esaclorobutadiene	μg/l	0,15	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Sommatoria organoalogenati	μg/l	10	<0,05	<0,05	<0,05	<0,01	<0,05	<0,05	<0,05
1,1-dicloroetano	μg/l	810	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-dicloroetilene (cis)	μg/l	60	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-dicloroetilene (trans)	μg/l	60	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-dicloropropano	μg/l	0,15	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,1,2-tricloroetano	μg/l	0,2	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,2,3-tricloropropano	μg/l	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
1,1,2,2-tetracloroetano	μg/l	0,05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Tribromometano	μg/l	0,3	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,2-dibromoetano	μg/l	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
Dibromoclorometano	μg/l	0,13	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010

Tabella 7
Analisi acque nei piezometri (Settembre 2019)

Campione			19SP2553-005	19SP2553-007	19SP2553-008	19SP2553-004	19SP2553-006	19SP2553-009	19SP2553-010
			Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 10 - Sito:
			area Bruere ex		area Bruere ex			area Bruere ex	area Bruere ex
Punto Campionato			cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica
Data Campionamento			05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019
		Limite D.Lgs							
		152/2006							
		acque							
		sotterranee e							
		D.Lgs							
Parametro	U.M.	31/2001 (*)	Valore	Valore	Valore	Valore	Valore	Valore	Valore
Bromodiclorometano	μg/l	0,17	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Benzo(a)antracene	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(a)pirene	μg/l	0,01	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(b)fluorantene	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(k)fluorantene	μg/l	0,05	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(g,h,i)perilene	μg/l	0,01	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Crisene	μg/l	5	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Dibenzo(a,h)antracene	μg/l	0,01	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Indeno(1,2,3-c,d) pirene	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Pirene	μg/l	50	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Idrocarburi Policiclici Aromatici	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
PCB*	μg/l	0,01	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
Idrocarburi totali come n-esano	μg/l	350	<35	<35	<35	<35	<35	<35	<35

Tabella 8
Analisi acque nei piezometri (Novembre 2019)

Campione			19EF4430-002 Pz 1 - Sito: area Bruere ex	19EF4430-004 Pz 2 - Sito: area Bruere ex	19EF4430-006 Pz 3 - Sito: area Bruere ex	19EF4430-001 Pz 4 - Sito: area Bruere ex		19EF4430-005 Pz 6 - Sito: area Bruere ex			Pz 10 - Sito: area Bruere ex	Pz 11 - Sito: area Bruere ex
Punto Campionato			cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica	discarica
Data Campionamento			26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019	27/11/2019	27/11/2019	27/11/2019
		Limite D.Lgs 152/2006 acque sotterranee e D.Lgs										
Parametro	U.M.	31/2001 (*)	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore
Soggiacenza*	m	-	3,78	5,05	5,10	4,10	4,61	5,32	17,5	22,5	11,3	11,9
рН	рН	-	7,12	7,26	7,27	6,93	7,08	7,48	7,17	7,16	6,88	7,31
Temperatura	°C	-	14,2	13,5	13,2	13,8	14,9	13,9	15,6	14,0	13,1	14,1
Conducibilità a 20°C	μS/cm	-	651	738	794	966	2241	652	1188	5144	867	764
Ossidabilità al permanganato	mg/l O2	-	<0,1	<0,1	0,8	0,3	8,1	0,8	1,5	50,7	0,4	0,4
Alluminio	μg/l	200	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Arsenico	μg/l	10	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Boro	μg/l	1000	<15,0	<15,0	39,6	68,3	569	18,8	169	1422	26,7	18,1
Cadmio	μg/l	5	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Cromo totale	μg/l	50	<1,0	<1,0	4,0	<1,0	1,9	2,6	<1,0	10,8	<1,0	<1,0
Ferro	μg/l	200	16,2	94,8	27,5	6,7	9,6	9,2	10,8	1425	1228	7,4
Manganese	μg/l	50	2,3	276	6,4	435	1499	1,3	414	265	1767	25,4
Mercurio	μg/l	1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Nichel	μg/l	20	<1,0	6,2	5,3	23,7	216	<1,0	73,4	142	160	117
Piombo	μg/l	10	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	1,4	<1,0	<1,0
Rame	μg/l	1000	1,5	1,4	2,0	4,8	23,5	2,2	7,2	<1,0	<1,0	<1,0
Zinco	μg/l	3000	3,5	3,4	4,8	4,4	3,7	2,8	14,0	7,0	4,7	7,6
Solfati	mg/l	250	107	112	132	68,0	80,8	162	53,8	15,8	140	111
Cloruri	mg/l	-	8,26	12,2	8,08	15,4	129	12,2	26,3	430	32,9	8,66
Azoto ammoniacale (come NH4)	mg/l	0,5 (*)	<0,026	0,085	<0,026	1,43	71,1	<0,026	6,81	338	0,384	0,081
Azoto nitrico (come N)	mg/l	-	0,74	0,46	2,96	19,8	39,1	0,74	22,4	3,63	0,76	4,41
Azoto nitroso (come N)	mg/l	-	<0,03	<0,03	<0,03	<0,03	0,07	<0,03	0,12	<0,03	<0,03	<0,03
Benzene	μg/l	1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Etilbenzene	μg/l	50	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Stirene	μg/l	25	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Toluene	μg/l	15	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
p-xilene	μg/l	10	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Clorometano	μg/l	1,5	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Triclorometano	μg/l	0,15	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Cloruro di vinile	μg/l	0,5	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-dicloroetano	μg/l	3	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-dicloroetilene	μg/l	0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
Tricloroetilene	μg/l	1,5	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,05	<0,05	<0,05	<0,05
Tetracloroetilene	μg/l	1,1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,17	<0,05	<0,05	<0,05
Esaclorobutadiene	μg/l	0,15	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Sommatoria organoalogenati	μg/l	10	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,22	<0,05	<0,05	<0,05
1,1-dicloroetano	μg/l	810	<0,05	<0,05	<0,05	<0,05	0,14	<0,05	0,06	<0,05	<0,05	<0,05
1,2-dicloroetilene (cis)	μg/l	60	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-dicloroetilene (trans)	μg/l	60	<0,05	<0,05	<0,05	<0,05	0,11	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-dicloropropano	μg/l	0,15	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,1,2-tricloroetano	μg/l	0,13	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,2,3-tricloropropano		0,001	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,1,2,2-tetracloroetano	μg/l	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
Tribromometano	μg/l	0,05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,2-dibromoetano	μg/l μg/l	0,001	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
r.z-aldromoetano	1.11(1/1	. 0.001	UUUI	\U UU I	. .	UUUI			. NIIIIII			

Tabella 8
Analisi acque nei piezometri (Novembre 2019)

Campione			19EF4430-002	19EF4430-004	19EF4430-006	19EF4430-001	19EF4430-003	19EF4430-005	19EF4430-009	19EF4430-012	19EF4430-010	19EF4430-011
			Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 7 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:	Pz 11 - Sito:
					area Bruere ex				area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex
Punto Campionato			cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica	discarica
Data Campionamento			26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019	27/11/2019	27/11/2019	27/11/2019
		Limite D.Lgs										
		152/2006										
		acque										
		sotterranee e										
		D.Lgs										
Parametro	U.M.	31/2001 (*)	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore
Bromodiclorometano	μg/l	0,17	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Benzo(a)antracene	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(a)pirene	μg/l	0,01	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(b)fluorantene	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(k)fluorantene	μg/l	0,05	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(g,h,i)perilene	μg/l	0,01	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Crisene	μg/l	5	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Dibenzo(a,h)antracene	μg/l	0,01	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Indeno(1,2,3-c,d) pirene	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Pirene	μg/l	50	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Idrocarburi Policiclici Aromatici	μg/l	0,1	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
PCB*	μg/l	0,01	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
Idrocarburi totali come n-esano	μg/l	350	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35

Tabella 9 Analisi acque nei piezometri (Febbraio 2020)

Campione			20EF1056-002	20EF1056-008	20EF1056-007	20EF1056-001	20EF1056-003	20EF1056-005	20EF1056-012	20EF1056-011	20EF1056-009
Punto Campionato			Pz 1 - Sito: area Bruere ex cotonificio	Pz 2 - Sito: area Bruere ex cotonificio	Pz 3 - Sito: area Bruere ex cotonificio	Pz 4 - Sito: area Bruere ex cotonificio	cotonificio	Pz 6 - Sito: area Bruere ex cotonificio	discarica	discarica	Pz 10 - Sito: area Bruere ex discarica
Data Campionamento			26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020
		Limite D.Lgs 152/2006 acque sotterranee e D.Lgs 31/2001									
Parametro	U.M.	(*)	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore
Soggiacenza*	m	-	4,59	5,62	6,29	5,12	5,11	6,05	17,8	22,4	11,8
pH	pH	-	8,29	7,50	7,63	6,85	7,26	7,77	7,17	7,35	7,53
Temperatura	°C	_	11,9	12,5	12,0	10,9	13,3	12,5	16,4	14,6	12,2
Conducibilità a 20°C	μS/cm	_	612	734	779	1586	2504	621	1401	4554	717
Ossidabilità al permanganato	mg/l O2	_	<0,1	<0,1	0,3	4,0	14,8	0,3	0,8	10,3	0,3
Alluminio	µg/l	200	<1,0	<1,0	<1,0	24,0	<1,0	54,4	<1,0	<1,0	<1,0
Arsenico	μg/l	10	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Boro	µg/l	1000	<15,0	<15,0	49,4	133	458	<15,0	159	1125	15,4
Cadmio	μg/l	5	<0,2	<0,2	<0,2	<0,2	0,3	<0,2	<0,2	0,3	<0,2
Cromo totale	μg/l	50	<1,0	<1,0	<1,0	<1,0	2,5	<1,0	<1,0	7,9	<1,0
Ferro	µg/l	200	9,6	274	16,7	7,6	14,5	11,3	35,4	12113	1122
Manganese	µg/l	50	92,9	502	23,9	1740	1781	2,0	1443	374	1825
Mercurio	μg/l	1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Nichel	μg/l	20	2,8	10,9	12,8	122	288	2,0	119	131	35,6
Piombo	μg/l	10	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Rame	μg/l	1000	<1,0	<1,0	<1,0	<1,0	21,8	<1,0	<1,0	<1,0	<1,0
Zinco		3000	<1,0	<1,0	6,0	6,1	<1,0	<1,0	7,2	5,5	<1,0
Solfati	µg/l mg/l	250	139	129	153	124	75,3	175	69,2	26,8	130
Cloruri	mg/l	230	15,5	15,6	20,2	93,2	155	17,2	40,5	357	27,1
Azoto ammoniacale (come NH4)	mg/l	0,5(*)	0,054	0,098	1,73	3,36	1,65	0,028	33,1	1,58	0,380
Azoto arrimoniacaie (come N114) Azoto nitrico (come N)	mg/l	-	0,034	0,17	4,60	22,7	0,71	1,76	2,02	0,67	0,04
Azoto nitroso (come N)			<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	0,25	<0,03	<0,03
Benzene	mg/l	1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Etilbenzene	µg/l	50	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
Stirene	µg/l	25	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Toluene	µg/l	15	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
	µg/l	10	<0,20	<0,20	<0,20		<0,20	<0,20	<0,20	<0,20	<0,20
p-xilene Clorometano	µg/l	1,5	<0,20	<0,20	<0,20	<0,20 <0,05	<0,05	<0,20	<0,20	<0,20	<0,05
Triclorometano	µg/l	0,15	<0,010	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
Cloruro di vinile	µg/l	0,13	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,19	<0,010
1,2-dicloroetano	µg/l	3	<0,05	<0,05	<0,05	<0,05	0,05	<0,05	<0,05	0,19	<0,05
1,1-dicloroetilene	µg/l	0,05	<0,005	<0,005	<0,05	<0,005	<0,005	<0,05	<0,005	0,07	<0,005
Tricloroetilene	µg/l	1,5	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,45	<0,003
Tetracloroetilene	µg/l	1,1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,09	0,43	<0,05
Esaclorobutadiene	µg/l	0,15	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,010	<0,010	<0,03
	µg/l	10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,010	1,60	<0,010
Sommatoria organoalogenati 1,1-dicloroetano	µg/l	810	<0,05	<0,05	<0,05	<0,05	0,45	<0,05	0,09	2,28	<0,05
1,2-dicloroetilene (cis)	µg/l	60	<0,05	<0,05	<0,05	<0,05	0,45	<0,05	<0,05	0,58	<0,05
1,2-dicloroetilene (cis)	µg/l	60	<0,05	<0,05	<0,05	<0,05	0,05	<0,05	<0,05	0,58	<0,05
1,2-dicloroetilene (trans) 1,2-dicloropropano	μg/l μg/l	0,15	<0,05	<0,05	<0,05	<0,05	<0,010	<0,05	0,05	0,50	<0,05
		·								·	
1,1,2-tricloroetano	µg/l	0,2	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,037	<0,010
1,2,3-tricloropropano	µg/l	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
1,1,2,2-tetracloroetano	μg/l	0,05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Tribromometano	μg/l	0,3	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
1,2-dibromoetano	µg/l	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,001	<0,001	<0,001
Dibromoclorometano	μg/l	0,13	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010

Tabella 9 Analisi acque nei piezometri (Febbraio 2020)

Campione			20EF1056-002 Pz 1 - Sito:	20EF1056-008 Pz 2 - Sito:	20EF1056-007 Pz 3 - Sito:	20EF1056-001 Pz 4 - Sito:	20EF1056-003 Pz 5 - Sito:	20EF1056-005 Pz 6 - Sito:	20EF1056-012 Pz 7 - Sito:	20EF1056-011 Pz 9 - Sito:	20EF1056-009 Pz 10 - Sito:
				area Bruere ex		area Bruere ex		area Bruere ex			area Bruere ex
Punto Campionato			cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica
Data Campionamento			26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020	26/02/2020
Data Campionamento		T	LOIGLILGEG	LOIOLILOLO	LOIGLILGEG	ZOIOZIZOZO	LOIGLILGEG	LOIGLILGEG	LOIGLILGEG	ZO/OZ/ZOZO	LOIGLILGEG
		Limite D.Lgs 152/2006 acque sotterranee e D.Lgs 31/2001									
Parametro	U.M.	(*)	Valore								
Bromodiclorometano	μg/l	0,17	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Benzo(a)antracene	μg/l	0,1	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Benzo(a)pirene	μg/l	0,01	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Benzo(b)fluorantene	μg/l	0,1	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Benzo(k)fluorantene	μg/l	0,05	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Benzo(g,h,i)perilene	μg/l	0,01	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Crisene	μg/l	5	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Dibenzo(a,h)antracene	μg/l	0,01	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Indeno(1,2,3-c,d) pirene	μg/l	0,1	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Pirene	μg/l	50	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Idrocarburi Policiclici Aromatici	μg/l	0,1	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB*	μg/l	0,01	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-28(2,4,4'-triclorobifenile) +	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-52(2,2',5,5'-tetraclorobifenile)*	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-77(3,3',4,4'-tetraclorobifenile)*	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-81(3,4,4',5-tetraclorobifenile)*	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-95(2,2',3,5',6-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-99(2,2',4,4',5-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-101(2,2',4,5,5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-105(2,3,3',4,4'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-110(2,3,3',4',6-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-114(2,3,4,4',5-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-118(2,3',4,4',5-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-126(3,3',4,4',5-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-128(2,2',3,3',4,4'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-138(2,2',3,4,4',5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-146(2,2',3,4',5,5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-149(2,2',3,4',5',6-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-151(2,2',3,5,5',6-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-153(2,2',4,4',5,5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-156(2,3,3',4,4',5-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-157(2,3,3',4,4',5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-169(3,3',4,4',5,5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-170(2,2',3,3',4,4',5-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-177(2,2',3,3',4',5,6-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-180(2,2',3,4,4',5,5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-183(2,2',3,4,4',5',6-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-187(2,2',3,4',5,5',6-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB-189(2,3,3',4,4',5,5'-	μg/l	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
Idrocarburi totali come n-esano	μg/l	350	<18	<18	<18	<18	59	<18	<18	<18	<18

Tabella 10 Analisi acque nei piezometri (Maggio 2020)

NI A COETTA ZIONE		400==1	400770	400==0	400== 1	400===	400==0	400===	400075	40007=
N ACCETTAZIONE		162771	162772	162773	162774	162775	162776	162777	162846	162847
		Colore	Colore	Colore	Colore	Colore	Colore	Colore	Colore	Colore
		campione:	campione:	campione:	campione:	campione:	campione:	campione:	campione:	campione:
		assente -	assente -	assente -	assente -	_	assente -	presente -	presente -	presente -
		Torbidità:	Torbidità:	Torbidità:	Torbidità:	presente - Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:
DESCRIZIONE CAMPIONE		assente -	presente -	assente -	assente - Odore: assente	presente -	assente -	presente -	presente - Odore: assente	presente -
DESCRIZIONE CAMPIONE	LIMITID Les	Odore: assente	Odore: assente	Odore: assente	Odore: assente	Odore: assente	Odore, asseme	Odore, asseme	Odore. asseme	Odore. asseme
	LIMITI D. Lgs									
	152/06 Acque	Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 7 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:
ETIQUETTA	sotterranee e	area Bruere ex			area Bruere ex				area Bruere ex	
ETICHETTA	D.Lgs 31/2001 (*)	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica
DATA CAMPIONAMENTO		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	27/05/2020	27/05/2020
Parametri fisici								10 -0		
(Soggiacenza falda rel. T.P.) m		4,22	5,34	5,6	4,75	4,95	5,56	19,73	22,22	11,4
(Profondità piezometro) m		10,85	10,85	11,23	11,15	12,02	12,23	21	27	25
(Diametro piezometro) cm		10	10	10	10	10	10	10	10	10
(Ora inizio spurgo) h		9,4	10,45	13	9,1	10,15	13,25		9,5	9
(Ora fine spurgo) h		9,58	11	13,15	9,27	10,35	13,43]	10,06	9,34
(Portata spurgo) I/min		15	15	15	15	14	15	eseguito solo	12	16
(Durata spurgo) min		18	15	15	17	20	18	campionamen		34
(Colonne spurgate) Col		5,2	5,2	5,1	5,1	5	5,2	to statico	5,1	5,1
(Portata campionamento) I/min		3	5	5	3	5	5]	5	5
(Profondità campionamento) m		9	9	9	8	9	9		25	20
(Temperatura Ambiente) °C		21	22	22	20	22	22	24	20	18
(Temperatura falda) °C		12,1	11,3	12	11,6	12,6	11,9	13,5	14,3	11,7
Fase surnatante		assente	assente	assente	assente	assente	assente	assente	assente	assente
pH unità pH		6,8	7	7,6	6,4	6,8	6,9	7	6,9	7,2
Conducibilità µS/cm a 25° C		574	667	575	1590	2190	509	1690	4860	757
Ossigeno disciolto mg/l di O2		5,2	1,1	2,5	6,2	2	0,97	4,9	1,3	1
Potenziale redox mV		270	240	300	260	340	260	350	220	200
Indice di permanganato mg O2/I		<0,50	<0,5	<0,50	2,6	<0,5	<0,5	5,3	2,8	0,5
Azoto Ammoniacale mg NH4/I	0,5 (*)	0,0033	0,072	<0,05	2,2	6,2	<0,05	8	38	0,32
Azoto nitroso µg di NO2/I	500	<30	<30	<30	<30	53	<30	2000	<30	0,32
Nitrati mg/l NO3	300	<2	<2	4,3	120	220	<2	280	<2	1,6
Cloruri mg/l		6,5	9,1	7,1	110	100	6,4	40	340	25
Solfati mg/l	250	88	96	110	150	110	93	68	38	130
Alluminio µg/l	200	<25	<25	<25	<25	<25	<25	<25	<25	<25
Arsenico μg/l	10	<1	<1 <50	<1	<1	<1 590	<1	<1	5,1	<1 61
Boro μg/l	1000	<50		<50	230	580	<50	250	1900	
Cadmio µg/l	5	<0,10	<0,10	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Cromo µg/l	50	<5	<5 56	<5	<5	<5	<5	<5	12	<5 200
Ferro μg/l	200	<20	56	<20	<20	<20	<20	<20	3900	260
Manganese μg/l	50	9	340	<2,5	630	1500	<2,5	680	300	2000
Mercurio μg/l	1	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Nichel μg/l	20	1,3	7,4	3,1	50	190	1,3	150	140	70
Piombo μg/l	10	<1	<1	<1	<1	<1	<1	<1	<1	<1
Rame µg/I	1000	<1	<1	<1	5,8	17	<1	7,2	<1	<1
Zinco μg/l	3000	<5	<5	<5	6,8	<5	<5	8,4	7,4	<5
Alifatici Alogenati Cancerogeni										
(Tribromometano) μg/l	0,3	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(1,2-Dibromoetano) μg/l	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
(Dibromoclorometano) μg/l	0,13	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
(Bromodiclorometano) μg/l	0,17	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
Alifatici Clorurati Cancerogeni										
(Monoclorometano) µg/l	1,5	<0,06	<0,06	<0,06	<0,06	<0,06	<0,06	<0,06	1,1	<0,06
(Triclorometano) µg/l	0,15	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015
(Cloruro di vinile) μg/l	0,5	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	0,13	<0,025
(1,2-Dicloroetano) μg/l	3	<0,030	<0,030	<0,020	<0,030	<0,030	<0,030	<0,030	0,047	<0,030
(.,= = 1010100taillo) Mg/1		.0,000	0,000	0,000	-0,000	0,000	0,000	0,000	3,017	0,000

Tabella 10 Analisi acque nei piezometri (Maggio 2020)

N ACCETTAZIONE		162771	162772	162773	162774	162775	162776	162777	162846	162847
N ACCE I ALIONE		102771	102112	102113	102114	102773	102770	102111	102040	102041
		Colore	Colore	Colore	Colore	Colore	Colore	Colore	Colore	Colore
		campione:	campione:	campione:	campione:	campione:	campione:	campione:	campione:	campione:
		assente -	assente -	assente -	assente -	presente -	assente -	presente -	presente -	presente -
		Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:
		assente -	presente -	assente -	assente -	presente -	assente -	presente -	presente -	presente -
DESCRIZIONE CAMPIONE		Odore: assente	Odore: assente	Odore: assente	Odore: assente					
	LIMITI D. Lgs									
	152/06 Acque	Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 7 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:
	sotterranee e	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex					
ETICHETTA	D.Lgs 31/2001 (*)	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica
DATA CAMPIONAMENTO		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	27/05/2020	27/05/2020
(1,1-Dicloroetene) μg/l	0,05	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025
(Tricloroetene) μg/l	1,5	<0,030	<0,030	<0,030	<0,030	<0,030	<0,030	<0,030	0,19	<0,030
(Tetracloroetene) μg/l	1,1	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0,15	<0,050
(Esaclorobutadiene) μg/l	0,15	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Alifatici Clorurati non Cancerogeni		2.25	2.25	2.25	0.000	0.00=	2.25	2.25		2.25
(1,1-Dicloroetano) μg/l	810	<0,020	<0,020	<0,020	0,022	0,095	<0,020	<0,020	5,3	<0,020
(cis-1,2-Dicloroetene) μg/l	60	<0,020	<0,020	<0,020	<0,020	0,034	<0,020	<0,020	0,28	0,022
(trans-1,2-Dicloroetene) µg/l		<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	0,44	<0,020
(1,2-Dicloropropano) μg/l	0,15	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	0,37	<0,015
(1,1,2-Tricloroetano) µg/l	0,2	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020
(1,2,3-Tricloropropano) µg/l	0,001	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020
_(1,1,2,2-Tetracloroetano) μg/l	0,05	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025
Composti organici aromatici (BTEX)				2.212	2.22			2.212	2.212	
(Benzene) μg/l	1	0,032	0,032	0,049	0,031	0,035	0,01	0,012	0,042	0,039
(Etilbenzene) µg/l	50	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,67	<0,1
(Stirene) µg/l	25	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
(Toluene) μg/l	15	0,23	0,26	0,33	0,22	0,19	0,12	0,1	<0,1	0,19
(p-Xilene (m+p)) μg/l	10	<0,1	0,1	0,1	<0,1	<0,1	<0,1	<0,1	0,77	<0,1
(o-Xilene) μg/l	201	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Policlorobifenili (PCB) μg/l	0,01	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005
Idrocarburi Policiclici Aromatici		×0.00=	10.00=	10.00=	10.00=	10.00=	10.00=	10.00=	0.040	10.00=
(Benzo(a)antracene) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,013	<0,005
(Benzo(a)pirene) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Benzo(b)fluorantene (31)) µg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Benzo(j)fluorantene) µg/l	0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Benzo(k)fluorantene (32)) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Benzo(g,h,i)perilene (33)) μg/l	5	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Crisene) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,021	0,01	<0,005
(Dibenzo(a,h)antracene) µg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Indeno(1,2,3 -c,d)pirene (36)) μg/l	50	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Pirene) µg/l	0,1	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	0,053 0,012	<0,005 <0,005	<0,005 <0,005
(Sommatoria (31,32,33,36)) μg/l		<0,005	<0,005	<0,005	<0,005	· ·		0,012	0,005	<0,005
(Naftalene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005 <0,005	0,0057 <0,005	<0,022	0,097	<0,005
(Acenaftene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,20	<0,005
(Acenaftilene) µg/l		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	0,0052	<0,20
(Antracene) µg/l		<0,005	<0,005	<0,005	<0,005	0,0053	<0,005	0,005	0,0052	<0,005
(Fenantrene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,016	0,03	<0,005
(Fluorene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Fluorantene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Benzo(e)pirene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Dibenzo(a, I)pirene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
(Dibenzo(a,e)pirene) µg/l		<0,005		·	<0,005	· ·			·	<0,005
(Dibenzo(a,i)pirene) µg/l			<0,005	<0,005		<0,005	<0,005	<0,005	<0,005	
(Dibenzo(a,h)pirene) µg/l	350	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
ldrocarburi totali come n-esano μg/l	350	48	78	25	42	37	28	29	28	24

Tabella 11
Analisi acque nei piezometri (Agosto 2020)

"NACCETTAZIONE3"		165519	165520	165521	165522	165523	165524	165525	165526	165571	165572	165573	165574
"DATACAMPIONAMENTO"		25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020
DATACAMI IONAMENTO		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 7 - Sito:	Pz 8 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:	Pz 11 - Sito:	Pz 12 - Sito:
"ETICHETTA"			area Bruere ex	area Bruere ex		area Bruere ex		area Bruere ex					Area Bruere ex
2110112117		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica	discarica	discarica	discarica
		Acqua di falda -	Acqua di falda -	Acqua di falda -	Acqua di falda -	Acqua di falda -	Acqua di falda -	Acqua di falda -		Acqua di falda -			Acqua di falda -
	LIMITI D. Lgs	Colore	Colore	Colore	Colore	Colore	Colore	Colore	Acqua di falda	Colore	Colore	A agua di falda	Colore
	152/06 Acque	campione: assente -	campione: assente -	campione: assente -	campione:	campione:	campione: assente -	campione: presente -	campionamento	campione: assente -	campione: assente -	Acqua di falda campionamento	campione: assente -
	sotterranee e	Torbidità:	Torbidità:	Torbidità:	assente -	assente -	Torbidità:	Torbidità:	non eseguito	Torbidità:	Torbidità:	non eseguito	Torbidità:
	DL 31/2001(*)	presente -	presente -	assente -	Torbidità: lieve -	Torbidità: lieve -	assente -	assente -	non eseguito	assente -	assente -	non eseguito	presente -
		Odore: assente	Odore: assente		Odore: assente	Odore: assente	Odore: assente	Odore: assente		Odore: lieve	Odore: assente		Odore: assente
"DESCRIZIONECAMPIONE"													
Parametri fisici		4.00		0.4	5.05	5.44	0.40	40.00		00.00	44.00		00.0
(Soggiacenza falda rel. T.P.) m		4,66	5,77	6,4	5,05	5,14	6,18	16,36		22,39	11,83		20,2
(Profondità piezometro) m		10,8	10,85	11,2	11,15	12	12,2	19,75		27	25		24
(Diametro piezometro) cm		10	10	10	10	10	10	10		10	10		10
(Ora inizio spurgo) h	-	9,45	10,41	12,15	9,15	10,1	11,44	14,25		8,4	9,05		11,15
(Ora fine spurgo) h		10	10,53	12,27	9,3	10,26	11,58	14,33		8,47	9,26		11,24
(Portata spurgo) I/min		10	10	10	10	10	10	10		16	15		10
(Durata spurgo) min		15	12	12	15	16	14	8		7	21		9
(Colonne spurgate) Col		3,1	3	3,2	3,1	3	3	3		3,1	3		3
(Portata campionamento) I/min		5	5	5	5	5	5	5		5	5		5
(Profondità campionamento) m		9	9	9	8	9	9	18		25,4	20		23,2
(Temperatura Ambiente) °C		25,3	26,8	28,5	25,3	25,8	28	28,5		27	28		27
(Temperatura falda) °C		13,1	12,2	13	13,5	13,6	15,3	16,1		13,4	13,7		16,1
Fase surnatante		assente	assente	assente	assente	assente	assente	assente		assente	assente		assente
pH@ prova in campo unità pH		6,9	7,1	6,8	6,8	6,8	7,4	6,8		7,1	6,9		6,8
Conducibilità@ prova in campo µS/cm a 25° C		659	678	705	1760	2950	679	1380		5480	773		2900
Ossigeno disciolto@ prova in campo mg/l di O2		4	1,2	3,8	6,2	3,2	4,9	4		2,6	4,6		2,2
Potenziale redox@ prova in campo mV		390	290	370	420	380	380	390		65	190		320
Indice di permanganato mg O2/I		<0,5	<0,5	<0,5	2,9	<0,5	<0,5	5,4		2,7	<0,5		0,51
Cloruri mg/l		11	8,2	10	140	180	12	33		400	17		190
Nitrati mg/I NO3		2,1	<2	6,8	89	89	4,8	23		<2	<2		6
Solfati mg/l	250	130	82	140	11	73	180	61		15	120		81
Azoto Ammoniacale mg NH4/I	0,5 (*)	<0,05	<0,05	0,11	6,7	79	<0,05	30		300	0,3		66
Azoto nitroso µg di NO2/I	500	<30	<30	<30	110	<30	<30	76		<30	<30		670
Alluminio μg/l	200	<25	<25	<25	<25	<25	<25	<25		37	38		80
Arsenico µg/l	10	<1	<1	<1	<1	1,7	<1	1,5		12	1,1		2,2
Boro μg/l	1000	<50	<50	<50	<50	<50	<50	<50		2000	52		710
Cadmio µg/l	5	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1		<0,1	<0,1		<0,1
Cromo μg/l	50	<5	<5 44	<5	<5	<5	<5	<5		13	<5 700		<5
Ferro μg/l	200	13	41	<20	<20	<20	<20	<20		24000	760		28
Manganese μg/l	50	56	450	3,1	1900	1900	3,7	1000		320	1900		2000
Mercurio µg/l	1 22	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5		<0,5	<0,5		<0,5
Nichel µg/l	20	4,4	10	5,4	100	280	3,1	92		140	47		350
Piombo μg/l	10	<1	<1	<1	<1	<1	<1	<1		<1	<1		<1
Rame µg/l	1000	<1	<1	<1	6,9	27	1,2	6,2		<1	<1		7,4
Zinco μg/l	3000	<5	<5	<5	<5	<5	56	<5 		7,6	<5		15
Idrocarburi totali come n-esano µg/l	350	<5	<5	<5	<5	<5	<5	<5		<5 7.6	nr		4F
Idrocarburi totali come n-esano (statico) μg/l	2.04	40 00F	40 00F	40.005	40.005	40 00F	40 00F	40 00F		7,6	<5		<5
Policlorobifenili (PCB) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
Alifatici Alogenati Cancerogeni		-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05		-0.05	-0.05		10.05
(Tribromometano) μg/l	0,3	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05		<0,05	<0,05		<0,05
(1,2-Dibromoetano) μg/l	0,001	<0,01	<0,01	<0,01	<0,01	0,022	<0,01	<0,01		0,14	<0,01		<0,01
(Dibromoclorometano) μg/l	0,13	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02		<0,02	<0,02		<0,02
(Bromodiclorometano) μg/l	0,17	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02		<0,02	<0,02		<0,02
Alifatici Clorurati Cancerogeni		50.00	-0.00	-0.00	-0.00	2.0		0.04			-0.00		-0.00
(Monoclorometano) μg/l	1,5	<0,06	<0,06	<0,06	<0,06	0,8	<0,06	0,21		<0,06	<0,06		<0,06

Tabella 11
Analisi acque nei piezometri (Agosto 2020)

"NACCETTAZIONE3"		165519	165520	165521	165522	165523	165524	165525	165526	165571	165572	165573	165574
"DATACAMPIONAMENTO"		25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 7 - Sito:	Pz 8 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:	Pz 11 - Sito:	Pz 12 - Sito:
"ETICHETTA"			area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	Area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	Area Bruere ex
		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica	discarica	discarica	discarica
		A squa di foldo	A agua di falda	A saus di foldo			A saus di foldo	A agua di falda		A sauce di folde	Acqua di falda -		A saus di foldo
		Acqua di falda - Colore	Acqua di falda - Colore	Acqua di falda - Colore	Acqua di falda -	Acqua di falda -	Acqua di falda - Colore	Acqua di falda - Colore		Acqua di falda - Colore	Colore		Acqua di falda - Colore
	LIMITI D. Lgs	campione:	campione:	campione:	Colore	Colore	campione:	campione:	Acqua di falda	campione:	campione:	Acqua di falda	campione:
	152/06 Acque	assente -	assente -	assente -	campione:	campione:	assente -	presente -	campionamento	•	assente -	campionamento	•
	sotterranee e	Torbidità:	Torbidità:	Torbidità:	assente -	assente -	Torbidità:	Torbidità:	non eseguito	Torbidità:	Torbidità:	non eseguito	Torbidità:
	DL 31/2001(*)	presente -	presente -	assente -	Torbidità: lieve - Odore: assente	Torbidità: lieve - Odore: assente	assente -	assente -		assente -	assente -		presente -
"DESCRIZIONECAMPIONE"		Odore: assente	Odore: assente	Odore: assente	Odore, asseme	Odore, asseme	Odore: assente	Odore: assente		Odore: lieve	Odore: assente		Odore: assente
(Triclorometano) µg/l	0,15	<0,015	<0,015	0,019	<0,015	<0,015	0,048	<0,015		<0,015	<0,015		<0,015
(Cloruro di vinile) μg/l	0,13	<0,015	<0,015	<0,025	<0,015	<0,015	<0,025	<0,015		<0,015	<0,015		0,034
(1,2-Dicloroetano) µg/l	3	<0,023	<0,025	<0,025	<0,023	0,052	<0,023	<0,023		0,084	<0,023		<0,034
(1,1-Dicloroetene) µg/l	0,05	<0,030	<0,030	<0,030	<0,030	<0,025	<0,025	<0,030		<0,025	<0,035		0,036
(Tricloroetene) μg/l	1,5	<0,023	<0,020	<0,020	<0,023	0,023	<0,023	<0,023		0,59	0,036		0,26
(Tricloroetene) μg/l	1,1	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0,069		0,56	<0,050		0,28
(Esaclorobutadiene) μg/l	0,15	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050		<0,050	<0,050		<0,050
Alifatici Clorurati non Cancerogeni	0,13	-0,000	-0,000	-0,000	-0,000	-0,000	-0,000	-0,000		-0,000	10,000		-0,000
(1,1-Dicloroetano) µg/l	810	<0,020	<0,020	<0,020	0,061	0,36	<0,020	0,097		4,9	<0,02		0,38
(i, 1-Dictoroetano) μg/l (cis-1,2-Dictoroetene) μg/l		<0,020	<0,020	<0,020	<0,020	0,13	<0,020	0,049		1,3	0,042	 	0,27
(trans-1,2-Dicloroetene) μg/l		<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020		0,38	<0,020		<0,020
(1,2-Dicloropropano) µg/l	0,15	<0,025	<0,020	<0,020	<0,025	<0,020	<0,025	<0,025		1,4	<0,015		0,054
(1,1,2-Tricloroetano) µg/l	0,2	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020		<0,020	<0,020		<0,020
(1,2,3-Tricloropropano) µg/l	0,001	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020		<0,020	<0,020		<0,020
(1,1,2,2-Tetracloroetano) μg/l	0,05	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025		<0,025	<0,025		<0,020
Composti organici aromatici (BTEX)	3,00	0,020	0,020	0,020	0,020	0,020	0,020	0,020		0,020	0,020		0,020
(Benzene) µg/l	1	0,02	0,13	0,041	0,089	0,088	0,13	0,21		4,2	0,25		0,27
(Etilbenzene) μg/l	50	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,36		0,24	0,3		0,27
(Stirene) µg/l	25	<0,10	<0,10	<0,10	<0,10	<0,10	<0.10	<0,10		<0,10	<0,10		<0,10
(Toluene) μg/l	15	0,089	0,85	0,42	0,7	0,36	1,1	3,3		1,1	2,6		1,3
(p-Xilene (m+p)) μg/l	10	0,037	0,3	0,21	0,38	<0,10	0,39	2,8		2,1	1,7		1,6
(o-Xilene) µg/l		<0,10	<0,10	<0,10	0,11	<0,10	0,13	0,96		0,4	0,6		0,51
Idrocarburi Policiclici Aromatici @ HPLC		-, -	, ,	-, -	- ,	-, -	-, -	-,		- ,	, ,		
(Benzo(a)antracene) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Benzo(a)pirene) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Benzo(b)fluorantene (31)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Benzo(j)fluorantene) μg/l	·	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Benzo(k)fluorantene (32)) μg/l	0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Benzo(g,h,i)perilene (33)) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Crisene) μg/l	5	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		0,025	<0,005		<0,005
(Dibenzo(a,h)antracene) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Indeno(1,2,3 -c,d)pirene (36)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Pirene) μg/l	50	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Sommatoria (31,32,33,36)) μg/l	0,1	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Naftalene) μg/l		<0,005	0,006	0,006	0,0091	0,12	<0,005	<0,005		0,12	<0,005		0,026
(Acenaftene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		0,094	<0,005		<0,005
(Acenaftilene) µg/l		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20		<0,20	<0,20		<0,20
(Antracene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Fenantrene) μg/l		<0,005	<0,005	<0,005	<0,005	0,0082	<0,005	<0,005		0,021	<0,005		0,0094
(Fluorene) μg/l		<0,005	<0,005	<0,005	<0,005	0,0057	<0,005	<0,005		0,071	<0,005		0,011
(Fluorantene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Benzo(e)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Dibenzo(a,l)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Dibenzo(a,e)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Dibenzo(a,i)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005
(Dibenzo(a,h)pirene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005		<0,005

Tabella 12 Analisi acque nei piezometri (Novembre 2020)

"NACCETTAZIONE3"		167989	168078	168079	167990	167991	168080	167992	167993	167994	168081
"DATACAMPIONAMENTO"		03/11/2020	04/11/2020	04/11/2020	03/11/2020	03/11/2020	04/11/2020	03/11/2020	03/11/2020	03/11/2020	04/11/2020
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 7 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:	Pz 12 - Sito:
"ETICHETTA"		Area Bruere ex	area Bruere ex	area Bruere ex		area Bruere ex		area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex
		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica	discarica
	LIMITI D. Lgs										
	152/06 Acque										campionamento
	sotterranee e										non eseguito
Nota	DL 31/2001(*)										
Parametri fisici		4.07		2.11				10.15	00.04	0.00	
(Soggiacenza falda rel. T.P.) m		4,87	5,7	6,44	5,27	5,35	6,2	18,15	22,24	9,83	
(Profondità piezometro) m		12	10,85	11,23	11,15	12,02	12,23	21	27	25	
(Diametro piezometro) cm		10	10	10	10	10	10	10	10	10	
(Ora inizio spurgo) h		11,2	9,2	10,05	13,4	14,1	9,42	10,45	10	9,15	
(Ora fine spurgo) h		11,34	9,3	10,17	13,52	14,25	9,54	10,55	10,13	9,41	
(Portata spurgo) I/min		12	13	10	12	11	12	/	9	14	
(Durata spurgo) min		14	10	12	12	15	12	10	13	26	
(Colonne spurgate) Col		3	3,2	3,2	3,1	3,2	3	3,1	3,1	3,1	
(Portata campionamento) I/min		5	5	5	5	5	5	5	5	5	
(Profondità campionamento) m		9	9	9	8 15	9	9	20	25,5	20	
(Temperatura Ambiente) °C		15	13	13	15	15	13	14	14	13	
(Temperatura falda) °C		15,2	13,2	13,2	14,5	14,4	13,6	14,7	14,7	14,6	
Fase surnatante		assente	assente	assente	assente	assente	assente	assente	assente	assente	
pH@ prova in campo unità pH		7,3 721	7,1 743	6,5 536	1440	3150	7,4 673	1700	6,9 5250	7,2 796	
Conducibilità @ prova in campo μS/cm a 25° C											
Ossigeno disciolto@ prova in campo mg/l di O2		4,8	2,4	6,2	6,6	1,3	8	2,6	2,5 110	2,9	
Potenziale redox@ prova in campo mV		300	310	340	390	370	340	290	110	200	
Richiesta chimica di ossigeno mg O2/I		40 F0	40 E0	40 F0	2.2	40 F0	40 F0	F 4	0.5	0.50	
Indice di permanganato mg O2/I		<0,50	<0,50	<0,50	2,3 97	<0,50 170	<0,50	5,4 52	2,5	0,58	
Cloruri mg/l		12 <2	11 <2	12 5,4	57	94	12 3,9	3,8	420 <2	18 <2	
Nitrati mg/l NO3	250	180	120	180	150	55	200		11	140	
Solfati mg/l	250					160		61	260		
Azoto Ammoniacale mg NH4/I	0,5 (*)	0,056 <30	<0,05 <30	<0,05 <30	1,8 36	<30	<0,05 <30	34 100	<30	0,32 <30	
Azoto nitroso μg di NO2/I	500	<25	<25	160	<25	<25	170	<25	<25	<25	
Alluminio µg/l	200				<1						
Arsenico µg/l	10 1000	<1 <50	<1 <50	<1 <50	200	970	<1 <50	1,1 270	9,2 1900	1,2 52	
Boro µg/l		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	
Cadmio µg/l	5	<0,10 <5	<5	<5	<5		<0,10 <5		14	<0,10 <5	
Cromo µg/l	50 200	24	140	230	<20	5,6 49	280	<5 71	17000	2500	
Ferro µg/l Manganese µg/l	50	130	510	230	1800	1500	9,8	2800	370	1900	
Manganese μg/ι Mercurio μg/l	1	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
Nichel µg/l	20	5,5	11	11	83	290	7	170	140	47	
Piombo µg/l	10	5,5 <1	<1	<1	<1	<1 <1	<1	<1	<1	<1	
Rame µg/l	1000	<1	<1	<1	5,2	36	<1	11	<1	4	
Zinco µg/l	3000	<5	<5	5,1	5,4	<5	9,5	14	7,9	8,5	
zinco μg/i Idrocarburi totali come n-esano μg/l	350	89	120	210	100	240	210	190	160	180	
idiocarburi totali come n-esano µg/i	330	09	120	210	100	240	210	130	100	100	
Policlorobifenili (PCB) μg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
Alifatici Alogenati Cancerogeni	0,01	-0,000	-0,000	-0,000	-0,000	-0,000	-0,000	-0,000	-0,000	-0,000	
(Tribromometano) µg/l	0,3	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	
(1,2-Dibromoetano) µg/l	0,001	<0,030	<0,030	<0,030	<0,030	<0,030	<0,030	<0,030	0,14	<0,030	
(Dibromoclorometano) µg/l	0,001	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,010	
(Bromodiclorometano) µg/l	0,13	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	
Alifatici Clorurati Cancerogeni	0,17	~0,020	~0,020	~0,020	~0,020	~0,020	~0,020	~0,020	~0,020	~0,020	
(Monoclorometano) µg/l	1,5	<0,06	<0,06	<0,06	<0,06	0,9	<0,06	0,24	1	<0,06	
, , , , ,		·	,			·			<0.015		
, , , ,				•	· ·	•	·	·		· ·	
, , ,										·	
(Monociorometano) μg/l (Triclorometano) μg/l (Cloruro di vinile) μg/l (1,2-Dicloroetano) μg/l	0,15 0,5 3	<0,00 <0,015 <0,025 <0,030	<0,06 <0,015 <0,025 <0,030	<0,00 <0,015 <0,025 <0,030	<0,00 <0,015 <0,025 <0,030	<0,015 <0,025 0,03	<0,00 <0,015 <0,025 <0,030	<0,015 <0,025 <0,030	<0,015 0,082 0,042	<0,00 <0,015 <0,025 <0,030	

Tabella 12 Analisi acque nei piezometri (Novembre 2020)

"NACCETTAZIONE3"		167989	168078	168079	167990	167991	168080	167992	167993	167994	168081
"DATACAMPIONAMENTO"		03/11/2020	04/11/2020	04/11/2020	03/11/2020	03/11/2020	04/11/2020	03/11/2020	03/11/2020	03/11/2020	04/11/2020
DATAGAMI IGNAMENTO		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:	Pz 7 - Sito:	Pz 9 - Sito:	Pz 10 - Sito:	Pz 12 - Sito:
"ETICHETTA"		Area Bruere ex			area Bruere ex	area Bruere ex			area Bruere ex		area Bruere ex
		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	discarica	discarica	discarica	discarica
	LIMITI D. Lgs										
	152/06 Acque										campionamento
	sotterranee e										non eseguito
Nota	DL 31/2001(*)										
(1,1-Dicloroetene) µg/l	0,05	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	0,044	<0,025	
(Tricloroetene) μg/l	1,5	<0,030	<0,030	<0,030	<0,030	0,037	<0,030	<0,030	0,077	<0,030	
(Tetracloroetene) μg/l	1,1	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0,1	<0,050	
(Esaclorobutadiene) μg/l	0,15	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	
Alifatici Clorurati non Cancerogeni											
(1,1-Dicloroetano) µg/l	810	<0,020	<0,020	<0,020	0,035	0,31	<0,020	0,13	6	<0,020	
(cis-1,2-Dicloroetene) µg/l	60	<0,020	<0,020	<0,020	0,02	0,12	<0,020	0,044	0,098	0,039	
(trans-1,2-Dicloroetene) µg/l	60	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	0,36	<0,020	
(1,2-Dicloropropano) µg/l	0,15	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	0,055	<0,015	
(1,1,2-Tricloroetano) µg/l	0,2	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	
(1,2,3-Tricloropropano) μg/l	0,001	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	
(1,1,2,2-Tetracloroetano) μg/l	0,05	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	
Composti organici aromatici (BTEX)											
(Benzene) µg/l	1	0,077	0,16	0,033	0,032	0,054	0,03	0,017	0,32	0,052	
(Etilbenzene) μg/l	50	0,1	0,22	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	
(Stirene) μg/l	25	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	
(Toluene) µg/l	15	1	2,1	0,43	0,44	0,5	0,4	0,16	0,34	0,51	
(p-Xilene (m+p)) μg/l	10	0,58	1,1	0,29	0,24	0,28	0,29	0,37	2,7	0,32	
(o-Xilene) µg/l		0,14	0,32	<0,10	<0,10	<0,10	<0,10	<0,10	0,16	<0,10	
Idrocarburi Policiclici Aromatici @ HPLC		·	·					·	· ·		
(Benzo(a)antracene) μg/l	0,1	<0,005	0,0092	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Benzo(a)pirene) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Benzo(b)fluorantene (31)) μg/l	0,1	<0,005	0,013	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Benzo(j)fluorantene) µg/l	·	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Benzo(k)fluorantene (32)) μg/l	0,05	<0,005	0,0072	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Benzo(g,h,i)perilene (33)) μg/l	0,01	<0,005	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Crisene) µg/l	5	<0,005	0,014	<0,005	<0,005	<0,005	<0,005	<0,005	0,069	<0,005	
(Dibenzo(a,h)antracene) µg/l	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Indeno(1,2,3 -c,d)pirene (36)) µg/l	0,1	<0,005	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Pirene) µg/l	50	<0,005	0,024	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Sommatoria (31,32,33,36)) μg/l	0,1	<0,005	0,041	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Naftalene) μg/l	-,	<0,005	<0,005	<0,005	<0,005	0,094	<0,005	<0,005	<0,005	<0,005	
(Acenaftene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Acenaftilene) µg/l		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
(Antracene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,0059	<0,005	
(Fenantrene) µg/l		<0,005	0,0071	<0,005	<0,005	0,0052	<0,005	<0,005	0,015	<0,005	
(Fluorene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,007	<0,005	
(Fluorantene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Benzo(e)pirene) μg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Dibenzo(a,I)pirene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Dibenzo(a,e)pirene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Diberize(a, v)pirerie) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Dibenzo(a,h)pirene) µg/l		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
(Disonzo(a, ii)piiono) pg/i		-0,000	٠٥,٥٥٥	-0,000	-0,000	•0,000	٠٥,٥٥٥	٠٠,٥٥٥	-0,000	٠٠,٥٥٥	

Tabella 13 Analisi acque sotterranee piezometri PZ1-PZ6 (gennaio 2018)

N ACCETTAZIONE		135422	135423	135424	135425	135426	135427
DATA CAMPIONAMENTO		25/01/2018	25/01/2018	25/01/2018	25/01/2018	25/01/2018	25/01/2018
DATA ARRIVO		25/01/2018	25/01/2018	25/01/2018	25/01/2018	25/01/2018	25/01/2018
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:
		area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex	area Bruere ex
ETICHETTA		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio
		Acqua di falda Colore	Acqua di falda -	Colore	Colore	Acqua di falda - Colore	Acqua di faida Colore
	LIMITI D. Lgs	campione:	Colore	campione:	campione:	campione:	campione:
	152/06 Acque	presente -	campione:	assente -	presente -	presente -	presente -
	sotterranee e	Torbidità:	assente -	Torbidità:	Torbidità:	Torbidità:	Torbidità:
	DL 31/2001(*)	presente -	Torbidità: lieve	assente -	presente -	presente -	presente -
	(,	Odore:	- Odore:	Odore:	Odore:	Odore:	Odore:
DESCRIZIONE CAMPIONE		assente	assente	assente	presente	presente	assente
Parametri fisici		5.44	5.74	2.24		5.07	0.07
(Soggiacenza falda rel. T.P.) m		5,14	5,71	6,61	5,71	5,87 12	6,97
(Profondità piezometro) m (Diametro piezometro) cm		10,2 10	10,87 10	11,15 10	12,09 10	10	12,25 10
(Ora inizio spurgo) h		8,38	9,15	9,45	10,48	11,2	10,1
(Ora fine spurgo) h		8,51	9,13	9,59	11,05	11,36	10,24
(Portata spurgo) I/min		15	15	13	15	15	15
(Durata spurgo) min		13	14	14	17	16	14
(Colonne spurgate) Col		4,9	5,2	5,1	5,1	5	5,1
(Portata campionamento) I/min		5	5	5	5	5	5
(Profondità campionamento) m		9	9	10	9	9	10
(Temperatura Ambiente) °C		3	3	3	4	4	4
(Temperatura falda) °C		12,8	13	12,8	12,9	14,2	12,5
Fase surnatante		assente	assente	assente	assente	assente	assente
pH unità pH		7,1	6,8	6,9	7	6,9	7,2
Conducibilità µS/cm a 25° C		776	922	835	1050	3270	784
Ossigeno disciolto mg/l di O2		3,2	0,25	0,45	0,81	0,07	4
Potenziale redox mV		290	230	430	210	200	330
Richiesta chimica di ossigeno (ST-COD) mg O2/I	2 5 (4)	13	14	14	9,4	97	9
Azoto Ammoniacale mg NH4/I	0,5 (*)	0,033	0,071	0,8	2	210	0,0024
Cloruri mg/l	250	19	16	18	24	170	22
Solfati mg/l Alluminio µg/l	250 200	190 23	190 15	210 13	200 17	59 8	210 15
Arsenico μg/l	10	1	1,7	0,95	1,3	4	0,9
Boro μg/l	1000	11	10	32	97	720	14
Cadmio µg/l	5	0	0	0	0	0	0
Cobalto µg/l	50	0,25	1,7	0,45	13	25	11
Cromo µg/l	50	0,33	0,37	1	0,69	8,3	1,1
Ferro µg/l	200	5,9	260	12	68	610	24
Manganese μg/I	50	120	500	180	1900	1300	3,3
Mercurio μg/l	1	0	0	0	0	0	0
Nichel μg/l	20	3,3	9	18	89	250	1,5
Piombo μg/l	10	0	0	0	0	1,2	0,14
Rame μg/I	1000	0,35	0,17	0,47	2,3	8,6	0,78
Zinco μg/l	3000	1,1	1,3	3	2	3,6	2,3
Policlorobifenili (PCB) µg/l	0,01	0	0	0	0	0	0
Idrocarburi Policiclici Aromatici							_
(Benzo(a)antracene) μg/l	0,1	0	0	0	0	0	0 00070
(Benzo(a)pirene) µg/l	0,01	0,00085	0,00085	0,00083	0,00082	0	0,00078
(Benzo(k)fluorantene (31)) µg/l	0,1 0,05	0,0013 0.00032	0,0012 0,00033	0	0,001 0,0002	0,0012 0,00021	0,0011 0,00022
(Benzo(k)fluorantene (32)) µg/l	0,05	0,00032	0,00033	0	0,0002	0,00021	0,00022
(Benzo(g,h,i)perilene (33)) μg/l (Crisene) μg/l	5	0	0,0041	0.0028	0,0028	0	0
(Dibenzo(a,h)antracene) µg/l	0,01	0	0,0041	0,0028	0,0028	0	0
(Indeno(1,2,3 -c,d)pirene (36)) μg/l	0,01	0	0	0	0	0	0
(Pirene) μg/l	50	0,0013	0,0023	0,00094	0,001	0,0029	0,0013
(Sommatoria (31,32,33,36)) μg/l	0,1	0,0016	0,0015	0	0,0012	0,0014	0,0013
(Naftalene) µg/l	-,-	0,0029	0,0092	0,0038	0,0048	0,022	0,0037
(Acenaftene) μg/l		0	0	0	0,00059	0,0039	0
(Acenaftilene) μg/l		0	0	0	0	0	0
(Antracene) µg/l		0,00032	0	0,00032	0,00041	0,0036	0
(Fenantrene) μg/l		0,0024	0,0046	0,0022	0,0021	0,0076	0,0027
(Fluorene) μg/l		0,00086	0,0012	0,00051	0,00061	0,0052	0,00054
(Fluorantene) μg/l		0,0011	0	0,00044	0,00049	0,0054	0,00068
Indice di idrocarburi (C10 - C40) μg/l		65	72	10	60	21	15
Idrocarburi C6 - C10 espressi come n-esano µg/l		0	0	0	0	20	0
Idrocarburi totali come sommatoria delle frazioni μg/l	350	65	72	10	60	41	15

Tabella 14 Analisi acque sotterranee piezometri PZ1-PZ6 (aprile 2018)

N ACCETTAZIONE		137530	137531	137532	137533	137534	137535
DATA CAMPIONAMENTO		18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018
DATA ARRIVO		18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018
		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:
		area Bruere ex					
ETICHETTA		cotonificio	cotonificio	cotonificio	cotonificio	cotonificio	cotonificio
	LIMITI D. Lgs		Acqua di falda	Acqua di falda		Acqua di falda	
	152/06 Acque	Colore	Colore	Colore	Colore	Colore	Colore
	sotterranee e	campione: assente -					
	DL 31/2001(*)	Torbidità:	Torbidità: lieve	Torbidità:	Torbidità: lieve	Torbidità:	Torbidità:
	DE 31/2001()	assente -	- Odore:	assente -	- Odore:	assente -	presente -
DESCRIZIONE CAMPIONE		Odore: assente	assente	Odore: assente	assente	Odore: assente	Odore: assente
Parametri fisici							
(Soggiacenza falda rel. T.P.) m		4,77	5,5	6,31	5,21	5,54	6,22
(Profondità piezometro) m		10,2	10,9	11,15	12,1	12	12,25
(Diametro piezometro) cm		10	10	10	10	10	10
(Ora inizio spurgo) h		8,5	9,32	10,44	12,02	11,3	10,15
(Ora fine spurgo) h		9,05	9,47	11	12,2	11,47	10,32
(Portata spurgo) I/min		14	14	12	15	15	14
(Durata spurgo) min		15	15	16	18	17	17
(Colonne spurgate) Col		4,9	5	5,1	5	5	5
(Portata campionamento) I/min		5	5	5	5	5	5
(Profondità campionamento) m		8	9	9	9	9	10
(Temperatura Ambiente) °C		14	15	18	22	22	17
(Temperatura falda) °C Fase surnatante		11,2	11,9	12,5	11,9	13,4	9,8
pH unità pH		assente 7,2	assente 6,9	assente 6,9	assente 6,9	assente 6,6	assente 7,3
Conducibilità µS/cm a 25° C		7,2	895	770	1060	2630	696
Ossigeno disciolto mg/l di O2		2,7	2	0,91	1	0,43	3,1
Potenziale redox mV		300	110	310	180	240	220
Richiesta chimica di ossigeno (ST-COD) mg O2/I		0	0	0	0	100	0
Azoto Ammoniacale mg NH4/I	0,5 (*)	0,015	0,086	0,54	0,27	78	0
Cloruri mg/l	0,0 ()	22	20	27	69	19	21
Solfati mg/l	250	170	200	160	130	170	45
Alluminio µg/l	200	2	12	6,9	5,7	0,66	2
Arsenico µg/I	10	0,18	0,7	0,14	0,46	0,91	0,14
Boro µg/l	1000	17	13	29	140	600	21
Cadmio μg/l	5	0	0	0	0	0,16	0
Cobalto µg/l	50	0,16	1,9	0,65	12	25	7,9
Cromo μg/l	50	0,43	0,41	1	0,62	3,8	1,3
Ferro μg/l	200	2,5	310	19	230	15	18
Manganese μg/l	50	68	590	160	1800	3100	2,9
Mercurio μg/I	1	0,1	0	0	0	0	0
Nichel μg/l	20	3,8	13	19	77	480	4,2
Piombo μg/l	10	0	0,1	0,14	0,19	0	0
Rame µg/l	1000	0,73	0,45	0,8	3,7	41	1
Zinco µg/l	3000	0	2,8	7	9,1 0	10 0	4,8 0
Policlorobifenili (PCB) µg/l Idrocarburi Policiclici Aromatici	0,01	U	U	U	0	U	U
(Benzo(a)antracene) µg/l	0,1	0,00089	0,00081	0	0	0	0
(Benzo(a)pirene) μg/l	0,01	0,0008	0,00061	0	0	0	0
(Benzo(a)pirene) μg/l (Benzo(b)fluorantene (31)) μg/l	0,01	0	0,00076	0	0	0	0
(Benzo(k)fluorantene (32)) μg/l	0,05	0	0,00076	0	0	0	0
(Benzo(q,h,i)perilene (33)) µq/l	0,01	0	0	0	0	0	0
(Crisene) µg/l	5	0,00074	0,00018	0	0,00021	0	0
(Dibenzo(a,h)antracene) μg/l	0,01	0	0	0	0	0	0
(Indeno(1,2,3 -c,d)pirene (36)) μg/l	0,1	0	0	0	0	0	0
(Pirene) μg/l	50	0,0031	0,0035	0,0007	0,00029	0,0014	0,00097
(Sommatoria (31,32,33,36)) μg/l	0,1	0	0,0012	0	0	0	0
(Naftalene) μg/l		0,0028	0,001	0,002	0,0027	0,026	0,0035
(Acenaftene) μg/l		0	0	0,00013	0,00055	0	0,00051
(Acenaftilene) μg/l		0	0	0	0	0	0
(Antracene) μg/l		0,00018	0,00017	0	0	0,00062	0,00013
(Fenantrene) μg/l		0,0024	0,0014	0,00054	0,00098	0,0032	0,0024
(Fluorene) μg/l		0,004	0,0032	0,0035	0,0033	0,0041	0,0044
(Fluorantene) μg/l		0,002	0,0018	0	0	0	0
(Benzo(j)fluorantene) µg/l		0	0	0	0	0	0
(Benzo(e)pirene) µg/l		0	0	0	0	0	0
(Dibenzo(a,l)pirene) µg/l		0 00077	0	0	0	0	0
(Dibenzo(a,e)pirene) µg/l		0,00077	0	0	0	0	0
(Dibenzo(a,i)pirene) µg/l		0	0	0	0	0	0
(Dibenzo(a,h)pirene) µg/l Indice di idrocarburi (C10 - C40) µg/l		42,2	191	64	23,3	26,2	149
Indice di idrocarburi (C10 - C40) μg/l Idrocarburi C6 - C10 espressi come n-esano μg/l		42,2	0	0	0	26,2	0
Idrocarburi C6 - C10 espressi come n-esano µg/i Idrocarburi totali come sommatoria delle frazioni µg/l	350	42,2	191	64,4	23,3	26,2	149
iarocarban totan come sominatoria delle frazioni µg/i	330	74,4	181	U -1 ,4	۷,5	۷٠,۷	143

N ACCETTAZIONE		139876	139877	139878	139879	139880	139881
DATA CAMPIONAMENTO		02/07/2018	02/07/2018	02/07/2018	02/07/2018	02/07/2018	02/07/2018
DATA ARRIVO		02/07/2018	02/07/2018	02/07/2018	02/07/2018	02/07/2018	02/07/2018
ETICHETTA		Pz 1 - Sito: area Bruere ex cotonificio	Pz 2 - Sito: area Bruere ex cotonificio	Pz 3 - Sito: area Bruere ex cotonificio	Pz 4 - Sito: area Bruere ex cotonificio	Pz 5 - Sito: area Bruere ex cotonificio	Pz 6 - Sito: area Bruere ex cotonificio
		Acqua di falda	Acqua di falda	Acqua di falda		Acqua di falda	Acqua di falda
	LIMITIDIA	- Colore	- Colore	- Colore	Acqua di falda		- Colore
	LIMITI D. Lgs 152/06 Acque	campione:	campione:	campione:	- Colore	campione:	campione:
	sotterranee e	assente - Torbidità:	assente - Torbidità:	assente - Torbidità:	campione: assente -	assente - Torbidità:	assente - Torbidità:
	DL 31/2001(*)	assente -	presente -	presente -	Torbidità:	presente -	presente -
	220112001()	Odore:	Odore:	Odore:	lieve - Odore:	Odore:	Odore:
DESCRIZIONE CAMPIONE		assente	assente	assente	assente	assente	assente
Parametri fisici		4.04	5.04	5.04	4.04	4.07	5.07
(Soggiacenza falda rel. T.P.) m (Profondità piezometro) m		4,24 10,2	5,34 10,9	5,64 11,15	4,64 12,1	4,87 12	5,87 12,25
(Diametro piezometro) cm		10,2	10,9	10	10	10	10
(Ora inizio spurgo) h		9,2	10,1	11,25	12,28	11,56	10,5
(Ora fine spurgo) h		9,4	10,28	11,45	12,46	12,15	11,11
(Portata spurgo) l/min		12	12	11	16	15	12
(Durata spurgo) min		20	18	20	18	19	21
(Colonne spurgate) Col		5,1	4,9	5,1	4,9	5,1	5
(Portata campionamento) I/min		5	5	5	5	5	5
(Profondità campionamento) m (Temperatura Ambiente) °C		8 26,4	8 26,5	8 28	8 29	8 29	9 27,5
(Temperatura falda) °C		11,8	12,8	11,6	13	13,1	10,8
Fase surnatante		assente	assente	assente	assente	assente	assente
pH unità pH		7,4	7	6,9	6,7	6,7	6,9
Conducibilità µS/cm a 25° C		487	640	876	1550	1670	709
Ossigeno disciolto mg/l di O2		3,4	0,96	0,91	0,89	0,72	3,7
Potenziale redox mV		320	250	320	300	320	300
Richiesta chimica di ossigeno (ST-COD) mg O2/I	0.5 (*)	9,5	14	7,6	27	42	6,5
Azoto Ammoniacale mg NH4/I	0,5 (*)	0,0017 7	0,015 9,5	0,0014 13	5	17 86	0,038 12
Cloruri mg/l Solfati mg/l	250	75	9,5	150	120	130	130
Alluminio µg/l	200	0	0	0	0	0	0
Arsenico µg/l	10	0,2	0,48	0,22	0,54	1,1	0,17
Boro µg/l	1000	14	9,9	36	160	440	31
Cadmio μg/l	5	0	0	0	0	0	0
Cobalto µg/l	50	0	1,4	0,12	2,7	16	0,46
Cromo μg/l	50	0,71	0,17	1,3	1	2,1	0,76
Ferro µg/I Manganese µg/I	200 50	0 8,5	400 460	5,8 1,4	0 620	0,66 2000	1,9 4,9
Mercurio µg/l	1	0	0	0	0	0	0
Nichel µg/l	20	0,94	7,9	5	63	290	3,1
Piombo μg/l	10	0	0	0	0	0	0
Rame µg/I	1000	0,4	0,32	0,54	6,4	20	0,62
Zinco μg/l	3000	0,55	5,7	1,2	1,2	0,22	0
Policlorobifenili (PCB) µg/l	0,01	0	0	0	0	0	0
Idrocarburi Policiclici Aromatici	0,1	0	0	0	0	0	0
(Benzo(a)antracene) µg/l (Benzo(a)pirene) µg/l	0,01	0	0	0	0	0	0
(Benzo(b)fluorantene (31)) μg/l	0,1	0	0	0	0	0	0
(Benzo(k)fluorantene (32)) μg/l	0,05	0	0	0	0	0	0
(Benzo(g,h,i)perilene (33)) μg/l	0,01	0	0	0	0	0	0
(Crisene) μg/l	5	0	0	0	0	0	0
(Dibenzo(a,h)antracene) µg/l	0,01	0	0	0	0	0	0
(Indeno(1,2,3 -c,d)pirene (36)) µg/l	0,1	0	0	0	0	0	0
(Pirene) µg/l (Sommatoria (31,32,33,36)) µg/l	50 0,1	0	0	0	0	0	0
(Sommatoria (31,32,33,36)) μg/i (Naftalene) μg/i	0,1	0	0	0	0	0	0
(Acenaftene) μg/l		0	0	0	0	0	0
(Acenaftilene) μg/l		0	0	0	0	0	0
(Antracene) µg/l		0	0	0	0	0	0
(Fenantrene) μg/l	ļ	0	0	0	0	0	0
(Fluorene) μg/l		0	0	0	0	0	0
(Fluorantene) µg/l	1	0	0	0	0	0	0
(Benzo(j)fluorantene) μg/l (Benzo(e)pirene) μg/l		0	0	0	0	0	0
(Dibenzo(a,l)pirene) μg/l		0	0	0	0	0	0
(Diberizo(a,i)pirerie) μg/l (Diberizo(a,e)pirerie) μg/l		0	0	0	0	0	0
(Dibenzo(a,i)pirene) µg/l		0	0	0	0	0	0
(Dibenzo(a,h)pirene) μg/l		0	0	0	0	0	0
Idrocarburi C6 - C10 espressi come n-esano μg/l	ļ	0	0	0	0	0	0
Indice di idrocarburi (C10 - C40) µg/l		68 68,4	0	0	60	549	0
Idrocarburi totali come sommatoria delle frazioni µg/l	350		0		60	549	

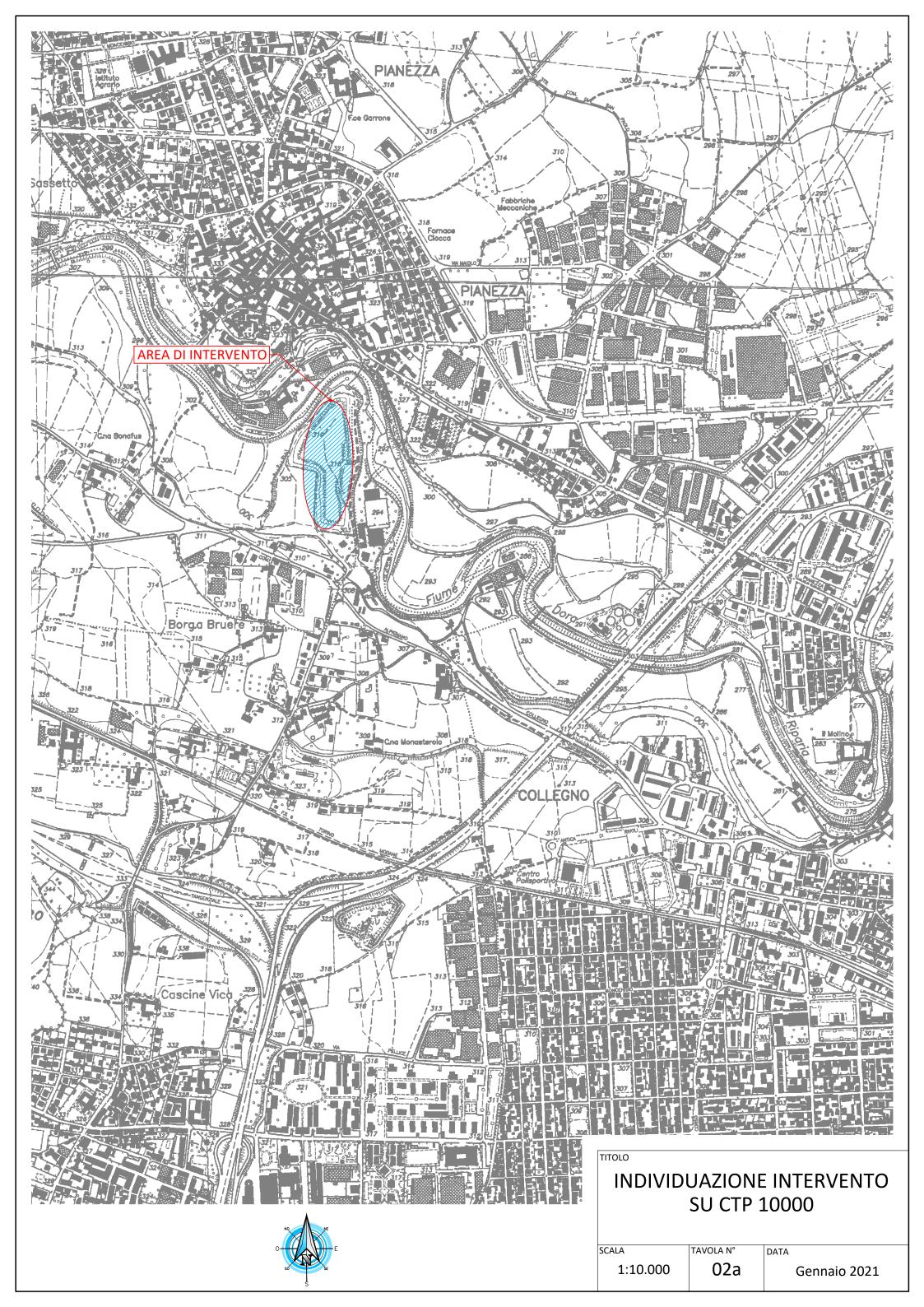
N ACCETTAZIONE	I	144285	144286	144287	144288	144289	144290
DATA CAMPIONAMENTO		28/11/2018	28/11/2018	28/11/2018	28/11/2018	28/11/2018	28/11/2018
DATA ARRIVO		28/11/2018	28/11/2018	28/11/2018	28/11/2018	28/11/2018	28/11/2018
DATA ARRIVO		Pz 1 - Sito:	Pz 2 - Sito:	Pz 3 - Sito:	Pz 4 - Sito:	Pz 5 - Sito:	Pz 6 - Sito:
		area Bruere					
ETICHETTA		ex cotonificio					
		- Colore					
	LIMITI D. Lgs	campione:	campione:	campione:	campione:	campione:	campione:
	152/06 Acque	assente -	assente -	assente -	assente -	presente -	assente -
	sotterranee e	Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:	Torbidità:
DECODIZIONE CAMBIONE	DL 31/2001(*)	assente -	lieve - Odore:	presente -	presente -	presente -	presente -
DESCRIZIONE CAMPIONE		Odore:	assente	Odore:	Odore:	Odore:	Odore:
Parametri fisici (Soggiacenza falda rel. T.P.) m		4,55	5,58	6,25	4,71	4,35	6,15
(Profondità piezometro) m		10,2	10,79	11,12	11,15	12,04	12,27
(Diametro piezometro) cm		10,2	10,79	10	10	10	10
(Ora inizio spurgo) h		11.05	10.3	9,3	11,35	10	9
(Ora fine spurgo) h		11,22	10,47	9,46	11,55	10.22	9,19
(Portata spurgo) I/min		13	12	12	13	13	13
(Durata spurgo) min		17	17	16	20	22	19
(Colonne spurgate) Col		5	5	5	5,1	4,7	5,1
(Portata campionamento) I/min		5	5	5	5	5	5
(Profondità campionamento) m		8	9	9	8	10	9
(Temperatura Ambiente) °C		6	5	4	7	5	4
(Temperatura falda) °C		11,8	12	14	10	13,9	14,1
Fase surnatante		assente	assente	assente	assente	assente	assente
pH unità pH		7	6,9	6,8	6,8	6,8	7,2
Conducibilità µS/cm a 25° C		672	839	722	981	2900	598
Ossigeno disciolto mg/l di O2		2,7	0,98	1,3	2,6	0,2	6,8
Potenziale redox mV		190	190	200	200	200	180
Richiesta chimica di ossigeno (ST-COD) mg O2/I	0 F (+)	8,2	2,5	2,9	6,4	73	0
Azoto Ammoniacale mg NH4/I	0,5 (*)	0	0,065	0,14	1,4	140	0
Cloruri mg/l	050	9,1	14	14	47	170	11
Solfati mg/l	250 200	120 4	140 5.4	170	100 0	66 0	140 0,57
Alluminio µg/l	10	0,22	0,51	0 0,13	0,52	3,1	0,57
Arsenico μg/l Boro μg/l	1000	18	21	39	140	820	22
Cadmio µg/l	5	0	0,01	0,01	0,02	0,05	0,01
Cobalto µg/l	50	0.05	1,5	0.2	1,8	32	3
Cromo µg/l	50	0,34	0,06	0,81	0,66	6,3	0,72
Ferro µg/l	200	0	110	0	0	10	0,41
Manganese μg/l	50	3	520	3,3	830	2400	1,4
Mercurio µg/l	1	0	0	0	0,01	0,01	0,02
Nichel µg/l	20	0,93	11	6,6	46	330	2,6
Piombo μg/l	10	0,07	0,03	0	0	0,17	0,03
Rame µg/l	1000	0,25	0,38	0,43	5	49	0,65
Zinco μg/l	3000	2,5	0,82	1,1	0,76	0,7	2,4
Policlorobifenili (PCB) μg/l	0,01	0	0	0	0	0	0
Idrocarburi Policiclici Aromatici							
(Benzo(a)antracene) μg/l	0,1	0	0	0	0	0	0
(Benzo(a)pirene) μg/l	0,01	0	0	0	0	0	0
(Benzo(b)fluorantene (31)) μg/l	0,1	0	0	0	0	0	0
(Benzo(k)fluorantene (32)) μg/l	0,05	0	0	0	0	0	0
(Benzo(g,h,i)perilene (33)) μg/l	0,01	0	0	0	0	0	0
(Crisene) µg/l	5	0	0	0	0	0	0
(Dibenzo(a,h)antracene) µg/l	0,01	0	0	0	0	0	0
(Indeno(1,2,3 -c,d)pirene (36)) μg/l	0,1	0	0	0	0 00063	0	0 0003
(Pirene) µg/l	50	0	0	0	0,00062 0	0,00029	0,0003
(Sommatoria (31,32,33,36)) μg/l (Naftalene) μg/l	0,1	0,0063	0,0066	0,0089	0,0039	0 0,072	0 0,0075
(Nattalene) μg/l (Acenaftene) μg/l		0,0063	0,0066	0,0089	0,0039	0,072	0,0075
(Acenaftilene) μg/l	1	0	0	0	0	0	0
(Antracene) µg/l	†	0,00042	0,00059	0,00057	0.00033	0,0027	0,0003
(Fenantrene) μg/l		0,00042	0,00039	0,0038	0,00037	0,0027	0,0003
(Fluorene) μg/l		0,0027	0,0038	0,0037	0,0037	0,017	0,0035
(Fluorantene) µg/l	1	0	0	0	0,00069	0	0
(Benzo(j)fluorantene) μg/l		0	0	0	0	0	0
(Benzo(e)pirene) μg/l		0	0	0	0	0	0
(Dibenzo(a,l)pirene) µg/l		0	0	0	0	0	0
(Dibenzo(a,e)pirene) µg/l		0	0	0	0	0	0
(Dibenzo(a,i)pirene) μg/l		0	0	0	0	0	0
(Dibenzo(a,h)pirene) µg/l		0	0	0	0	0	0
Idrocarburi C6 - C10 espressi come n-esano μg/l		0	0	0	0	0,5	0
Indice di idrocarburi (C10 - C40) µg/l		0	0	289	25,6	62	289
ldrocarburi totali come n-esano μg/l	350	0	0	289	25,6	62,7	289
· · · · · · · · · · · · · · · · · · ·							

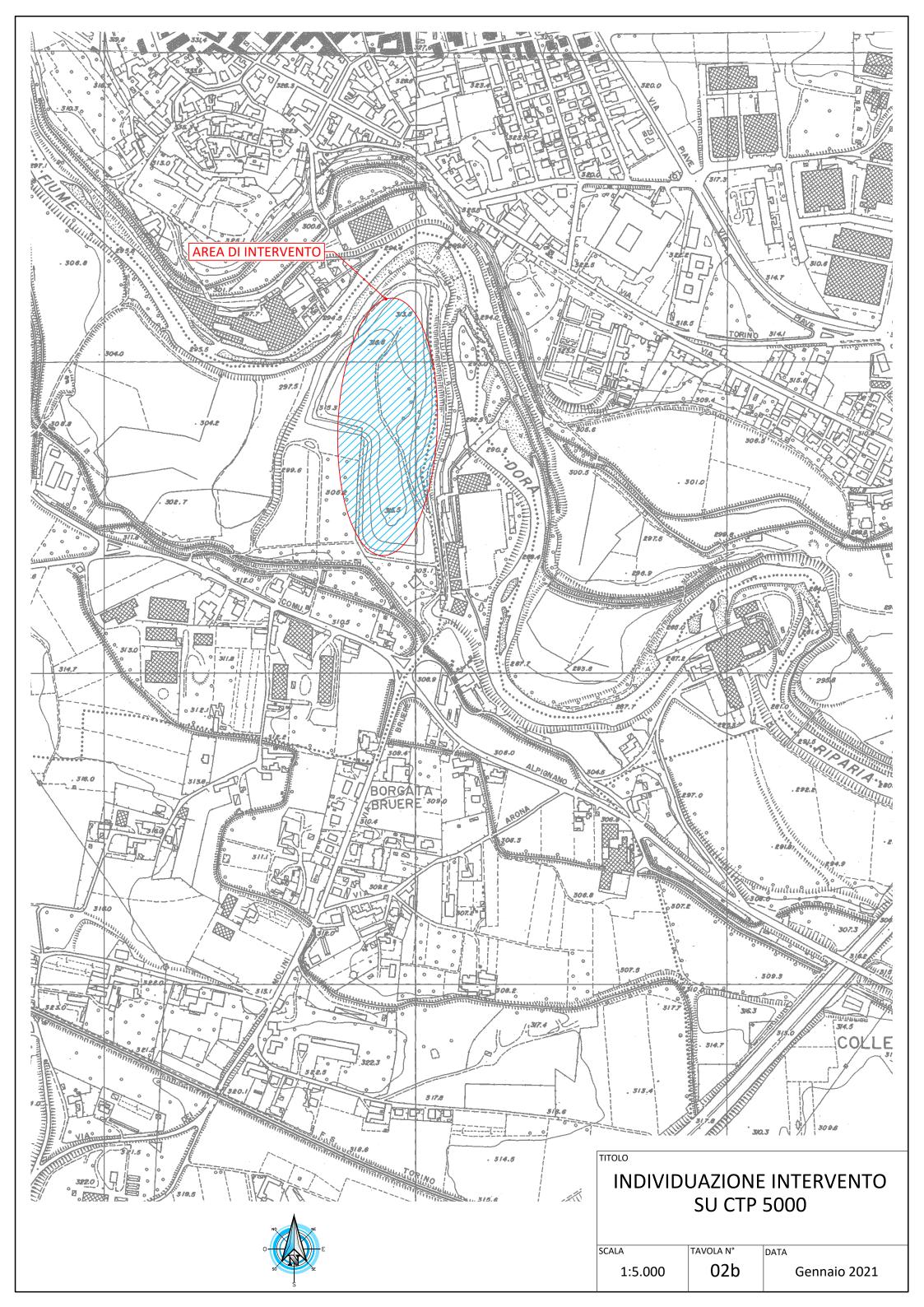
Tabella 17 - Risultati analisi acque superficiali campionamenti 2019

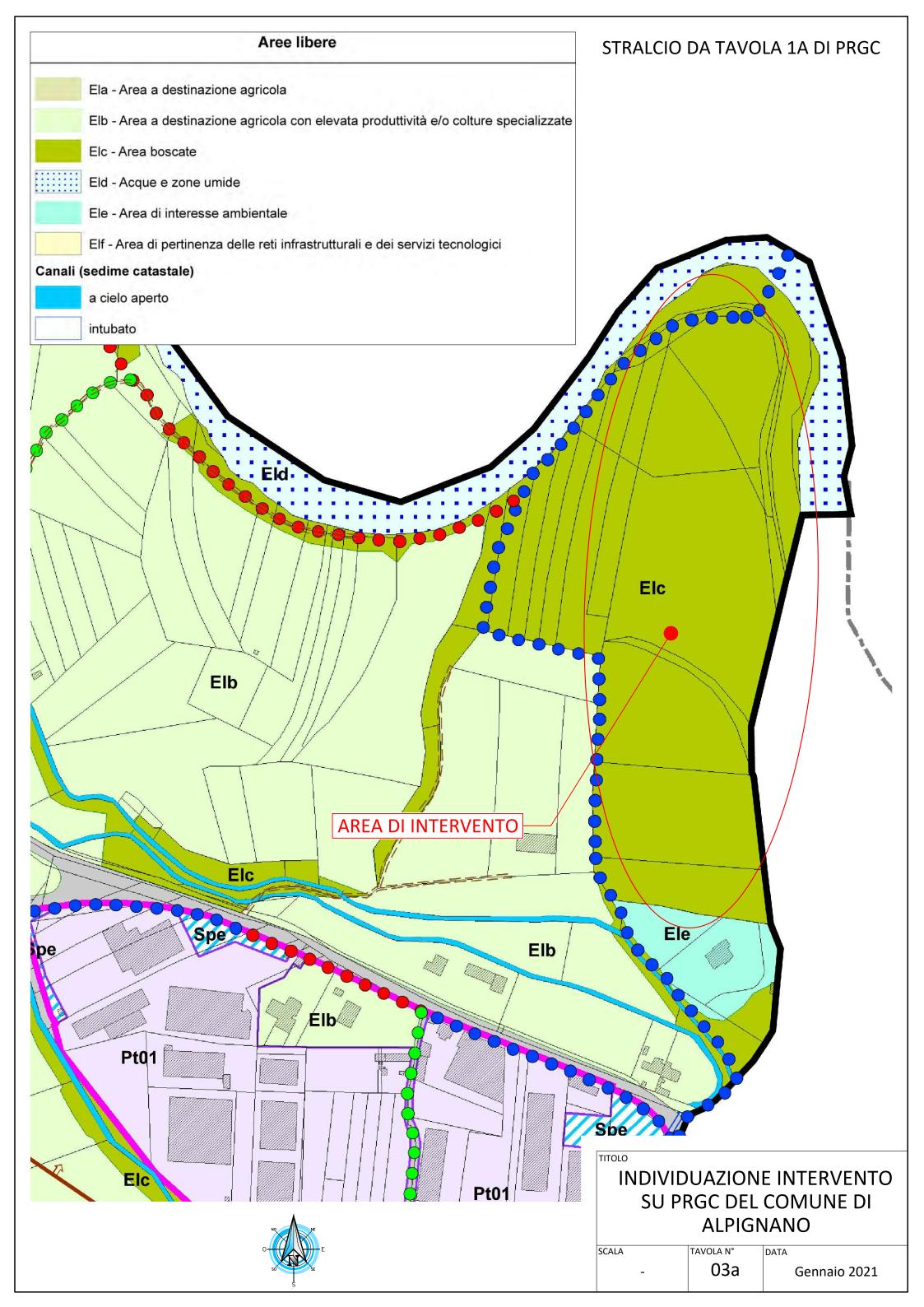
								19SP2553-	19SP2553-	19EF4430-	
N ACCETTAZIONE	146773	146774	146775	150314	150315	150316	19SP2553-002	001	003	007	19EF4430-008
DATA ARRIVO	12/02/2019	12/02/2019	12/02/2019	15/05/2019	15/05/2019	15/05/2019	05/09/2019	05/09/2019	05/09/2019	26/11/2019	26/11/2019
DATA ARRIVO	12/02/2019	12/02/2019	12/02/2019 Acqua	15/05/2019	15/05/2019	15/05/2019 Acqua	05/09/2019	05/09/2019	05/09/2019 Acqua	26/11/2019	26/11/2019 Acqua
	Acqua superficiale	Acqua superficiale	superficiale (ex	Acqua superficiale	Acqua superficiale	superficiale (ex	Acqua superficiale	Acqua superficiale	superficiale (ex	Acqua superficiale	superficiale (ex
ETICHETTA	(campi)	(ponte)	cotonificio)	(campi)	(ponte)	cotonificio)	(campi))	(ponte)	cotonificio)	(ponte)	cotonificio)
DESCRIZIONE CAMPIONE	Acqua superficiale	Acqua superficiale	Acqua superficiale	Acqua superficiale	Acqua superficiale	Acqua superficiale	•	Acqua superficiale	Acqua superficiale	Acqua superficiale	Acqua superficiale
pH unità pH	7,9	7,9	7,8	7,4	6,9	7	7,51	7,38	7,49	7,53	8,05
Richiesta chimica di ossigeno (ST-COD) mg O2/I	8,1	9,4	9,3	30	33	24	6,1	6,9	5,2	6,8	5,9
Azoto Ammoniacale mg NH4/I	0,85	0,9	0,9	<0,03	<0,03	<0,03	0,24	0,26	0,21	0,08	0,08
Alluminio μg/l	21	21	16	27	35	29	86,2	<1,0	<1,0	<1,0	<1,0
Arsenico μg/l	1,4	1,5	1,6	1,2	1,2	1,2	3,6	3,1	3,5	3,1	3,3
Cadmio μg/l	<0,10	<0,10	<0,10	<0,10	<0,10	0,52	<0,2	<0,2	<0,2	<0,2	<0,2
Cromo μg/l	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	1,4	1,3	1,4	2,2	1,6
Ferro μg/l	32	29	61	65	88	51	<1,0	<1,0	<1,0	13,1	7,3
Manganese μg/l	9,7	9,7	15	33	40	29	13,1	16,4	11,2	9,8	14,6
Mercurio μg/l	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,1	<0,1	<0,1	<0,1	<0,1
Nichel μg/l	1,3	1,1	1,3	1,1	1,2	1	<1,0	1,1	<1,0	3,1	3,3
Piombo μg/l	<1	<1	<1	<1	<1	<1	<1,0	<1,0	<1,0	<1,0	<1,0
Rame μg/I	<10	<10	<10	<10	<10	<10	<1,0	<1,0	<1,0	1,6	2,6
Zinco μg/l	<25	<25	<25	<25	<25	<25	<1,0	<1,0	<1,0	3,0	4,6
Policlorobifenili (PCB) μg/l	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,01	<0,01	<0,01	<0,01	<0,01
Idrocarburi Policiclici Aromatici	0.005	0.005	2 225	0.005	2 225	2 225	.0.000	.0.000	.0.0000	.0.000	.0.000
(Benzo(a)antracene) μg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
(Benzo(a)pirene) µg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
(Benzo(b)fluorantene (31)) μg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
(Benzo(k)fluorantene (32)) µg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
(Benzo(g,h,i)perilene (33)) µg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Benzo(j)fluorantene*µg/l	<0,005	40.005	40.005	40.005	40.005	10.005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
(Crisene) µg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
(Dibenzo(a,h)antracene) µg/l	<0,005	<0,005	<0,005 <0,005	<0,005	<0,005	<0,005	40.0000	40,0000	<0.0000	<0.0000	40,0000
Dibenzo(a,e)pirene μg/l	<0,005	<0,005		<0,005	<0,005 <0,005	<0,005	<0,0020 <0,0020	<0,0020	<0,0020 <0,0020	<0,0020 <0,0020	<0,0020 <0,0020
Dibenzo(a,h)pirene μg/l Dibenzo(a,i)pirene μg/l	<0,005	<0,005	<0,005	<0,005		<0,005	<0,0020	<0,0020 <0,0020	<0,0020	<0,0020	<0,0020
Dibenzo(a,l)pirene µg/l	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	<0,005 <0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
(Indeno(1,2,3 -c,d)pirene (36)) µg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
	<0,005	<0,005	<0,005	<0,005	0,0051	0,0093	<0,0020	<0,0020	0,0020	<0,0020	<0,0020
(Pirene) μg/l (Sommatoria (31,32,33,36)) μg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0095	<0,0020	<0,0020	0,0036	~0,0020	<0,0020
(Naftalene) μg/l	<0,005	0,005	0,0069	0,005	0,014	0,003					
(Acenaftene) μg/l	<0,005	<0,005	<0,005	0,023	0,014	0,010					
(Acenaftilene) μg/l	<0,005	<0,005	<0,005	<0,005	<0,015	<0,012					
(Antracene) µg/l	<0,005	<0,005	<0,005	<0,005	<0,005	0,0094					
(Fenantrene) μg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0094					
(Fluorene) μg/l	<0,005	<0,005	<0,005	<0,005	0,0056	0,0098					
(Fluorantene) μg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,0098					
(пиогаптеле) µул	~ 0,005	~ 0,005	~ 0,000	~ 0,005	~ 0,000	~ 0,000					

		l		l	l			l				
	20EF1056-	20EF1056-	20EF1056-									
N ACCETTAZIONE	010	006	004	162779	162780	162781	165585	165586	165587	167995	167996	167997
							non	26/08/2020	26/08/2020	non	03/11/2020	03/11/2020
DATA ARRIVO	26/02/2020	26/02/2020	26/02/2020	26/05/2020	26/05/2020	26/05/2020	eseguito	20/00/2020	20/00/2020	eseguito	03/11/2020	03/11/2020
							non	26/08/2020	26/08/2020	non	03/11/2020	03/11/2020
DATA CAMPIONAMENTO	26/02/2020	26/02/2020	26/02/2020	26/05/2020	26/05/2020	26/05/2020	eseguito	20/00/2020	20/00/2020	eseguito	00/11/2020	00/11/2020
	Acqua	Acqua	Acqua superficiale	Acqua	Acqua	Acqua superficiale	Acqua	Acqua	Acqua superficiale	Acqua	Acqua	Acqua superficiale
	superficiale	superficiale (ponte)	(ex	superficiale (campi)	superficiale (ponte)	(ex	superficiale (campi)	superficiale	(ex	superficiale (campi)	superficiale (ponte)	(ex
ETICHETTA	(campi)	(polite)	cotonificio)	(campi)	(ponte)	cotonificio)	(campi)	(ponte)	cotonificio)	(campi)	(ponte)	cotonificio)
	Acqua	Acqua	Acqua	Acqua	Acqua	Acqua	Acqua	Acqua	Acqua	Acqua	Acqua	Acqua
DESCRIZIONE CAMPIONE	superficiale	superficiale	superficiale	superficiale	superficiale	superficiale	superficiale	superficiale	superficiale	superficiale	superficiale	superficiale
pH unità pH	7,70	8,03	8,54	8,1	8,1	8		8,1	8,2		8,1	8,2
Richiesta chimica di ossigeno (ST-COD) mg O2/I	24,3	20,5	23,9	<5	5	33		<5	<5		<5	<5
Azoto Ammoniacale mg NH4/I	1,09	0,62	0,29	0,057	0,047	0,04		<0,030	<0,03		<0,03	<0,03
Alluminio μg/l	<1,0	<1,0	<1,0									
Arsenico μg/l	<1,0	<1,0	<1,0	<1	1,2	1,1		<1	<1		1,2	1,1
Cadmio μg/l	<0,2	<0,2	<0,2	<0,10	<0,10	<0,10		<0,10	<0,10		<0,10	<0,10
Cromo μg/l	<1,0	<1,0	<1,0	<5	<5	<5		<5	<5		<5	<5
Ferro μg/l	4,4	<1,0	4,6	350	380	440		210	110		140	280
Manganese μg/l	11,3	8,6	11,2	78	160	92		14	19		22	43
Mercurio μg/l	<0,1	<0,1	<0,1	16	18	16		<0,5	<0,5		<0,50	<0,50
Nichel μg/l	<1,0	<1,0	<1,0	2,7	3,6	3		1,6	1,7		2	1,6
Piombo μg/l	<1,0	<1,0	<1,0	1,7	3	2		<1	<1		<1	<1
Rame µg/I	<1,0	<1,0	<1,0	2,7	4,5	3,1		1,2	1,7		1,9	1,3
Zinco μg/l	3,5	<1,0	<1,0	<5	<5	<5		5,6	8,3		<5	8,2
Benzo(a)antracene µg/l	<0,0020	<0,0020	<0,0020									
Benzo(a)pirene µg/l	<0,0020	<0,0020	<0,0020									
Benzo(k)fluorantene μg/l	<0,0020	<0,0020	<0,0020									
Pirene μg/l	<0,0020	<0,0020	<0,0020									
Crisene µg/l	<0,0020	<0,0020	<0,0020									
Benzo(g,h,i)perilene µg/l	<0,0020	<0,0020	<0,0020									
Indeno(1,2,3-c,d)pirene µg/l	<0,0020	<0,0020	<0,0020									
Benzo(b)fluorantene μg/l	<0,0020	<0,0020	<0,0020									
Benzo(j)fluorantene* µg/l	<0,0020	<0,0020	<0,0020									
Dibenzo(a,e)pirene µg/l	<0,0020	<0,0020	<0,0020									
Dibenzo(a,h)pirene μg/l	<0,0020	<0,0020	<0,0020									
Dibenzo(a,i)pirene µg/l	<0,0020	<0,0020	<0,0020									
Dibenzo(a,l)pirene μg/l	<0,0020	<0,0020	<0,0020									
PCB* µg/l	<0,01	<0,01	<0,01									

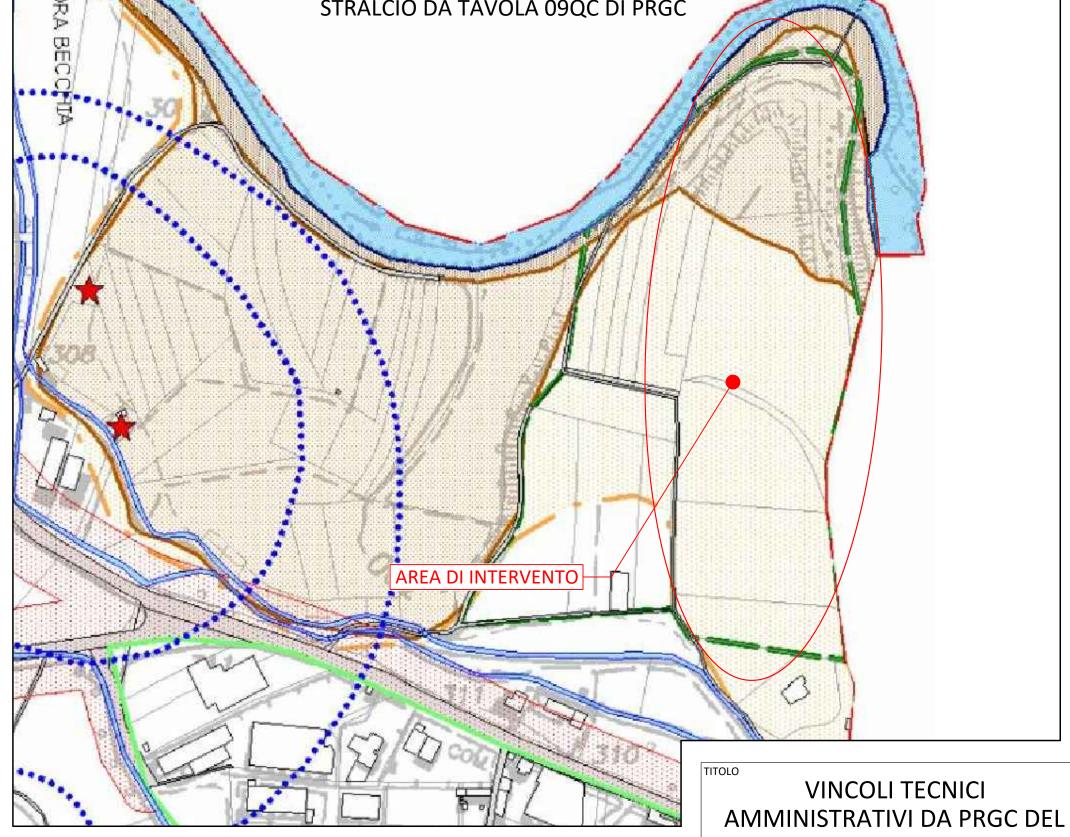
ALLEGATO 5 ALLEGATI GRAFICI

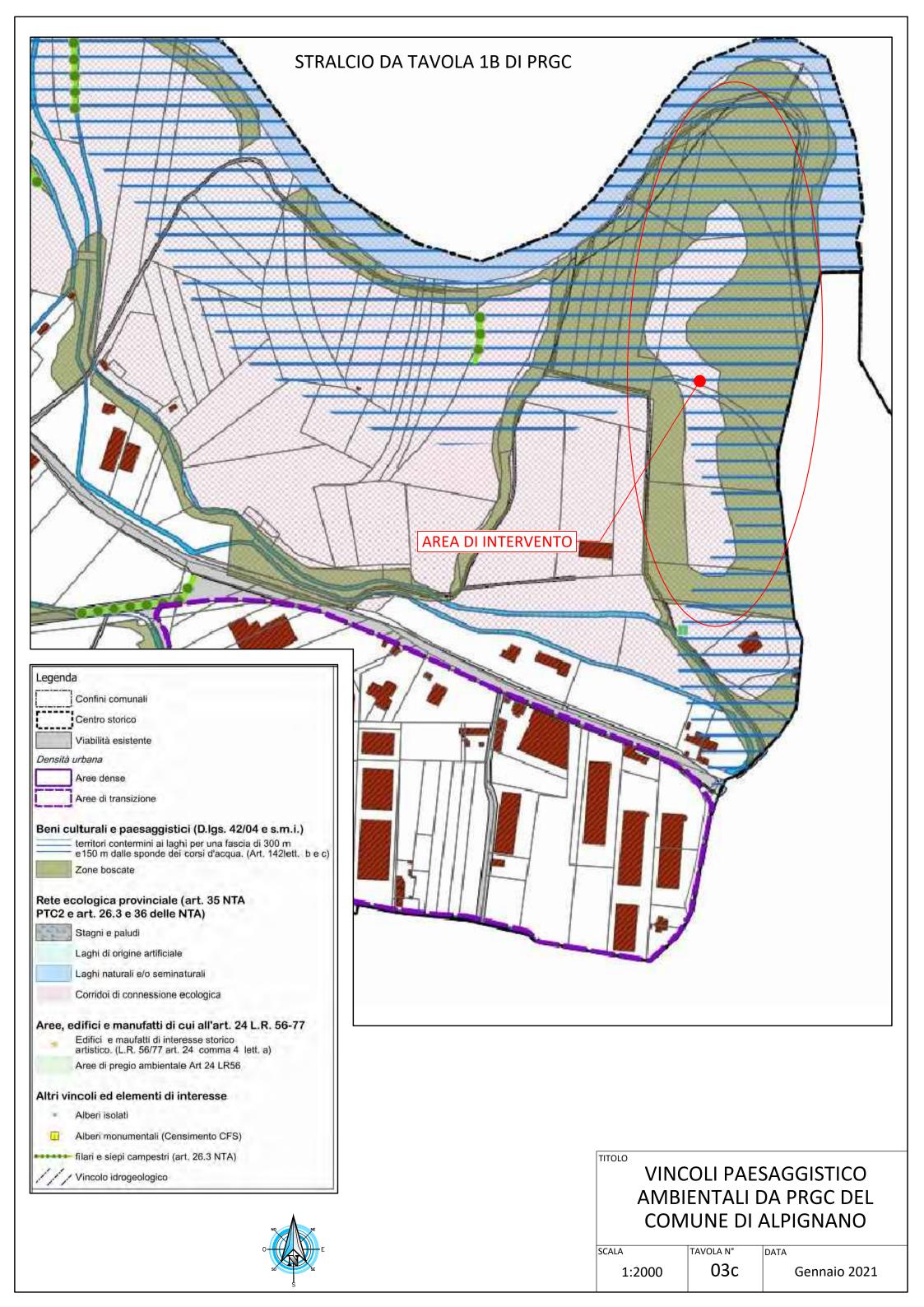

LEGENDA:

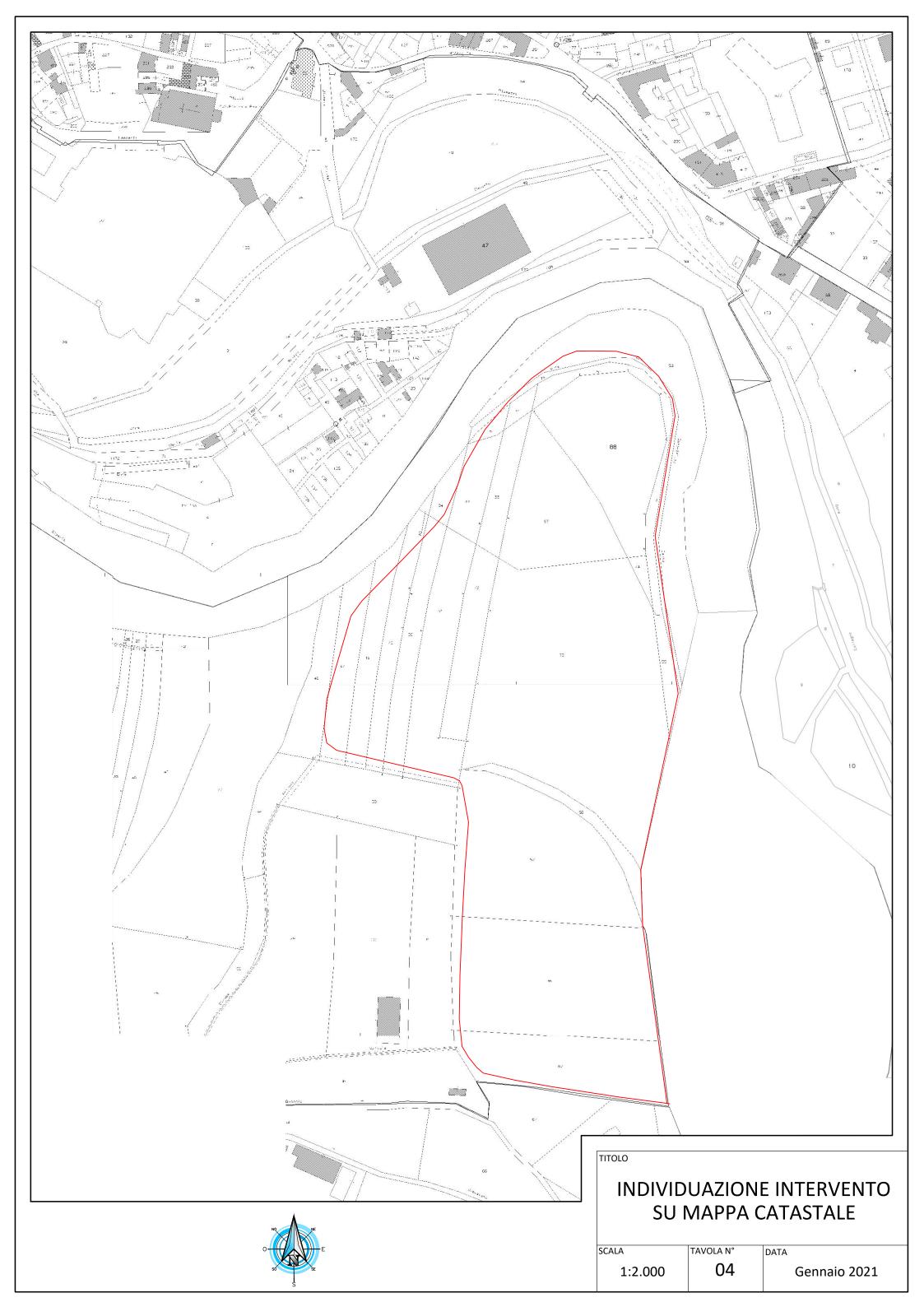

CFB1 - CFB2 - CFB3: punti di campionamento acque sul Fiume Dora


SU FOTO AEREA

SCALA TAVOLA N°


01 Gennaio 2021

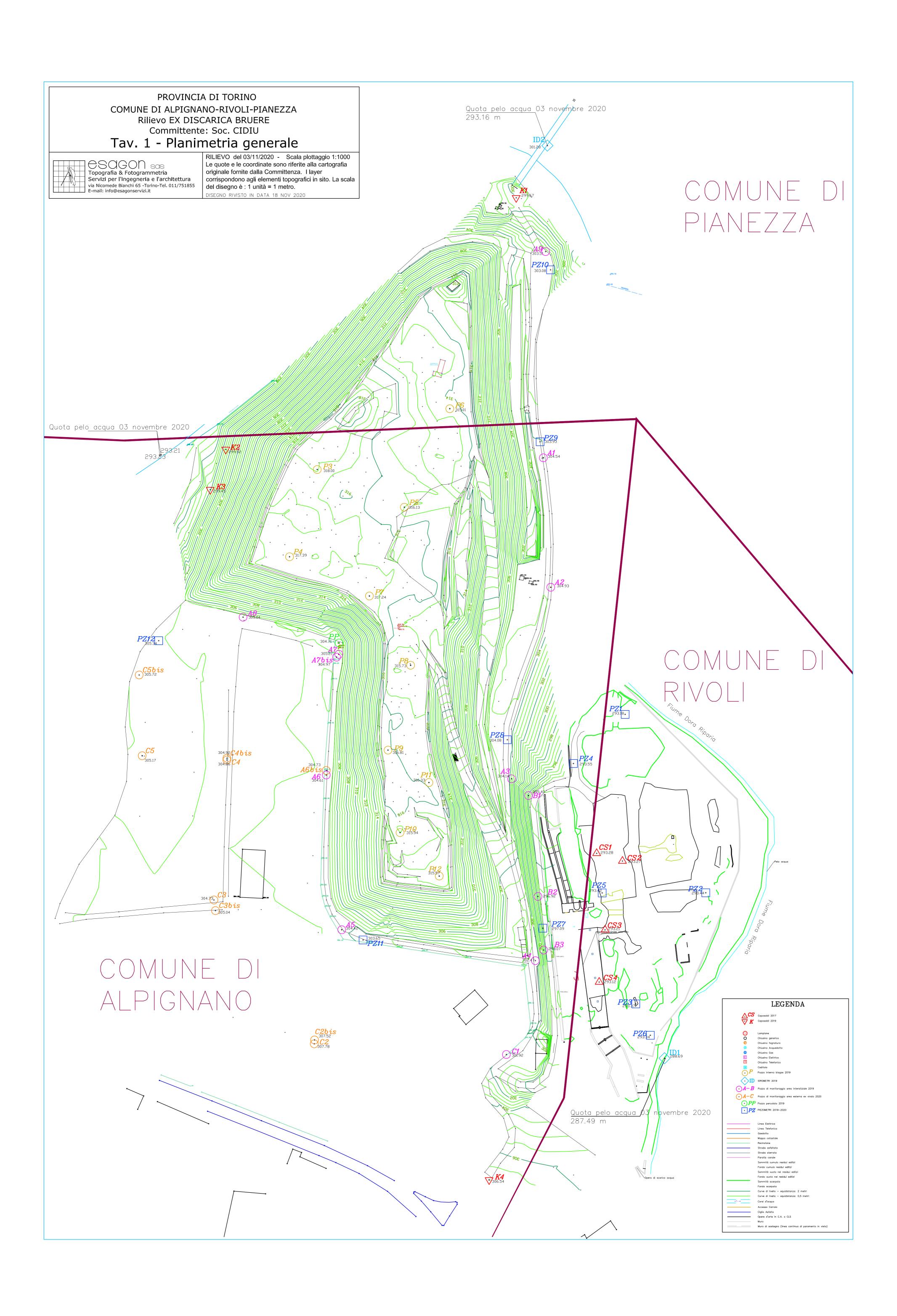




COMUNE DI ALPIGNANO

SCALA 1:2000 TAVOLA N° 03b

DATA Gennaio 2021



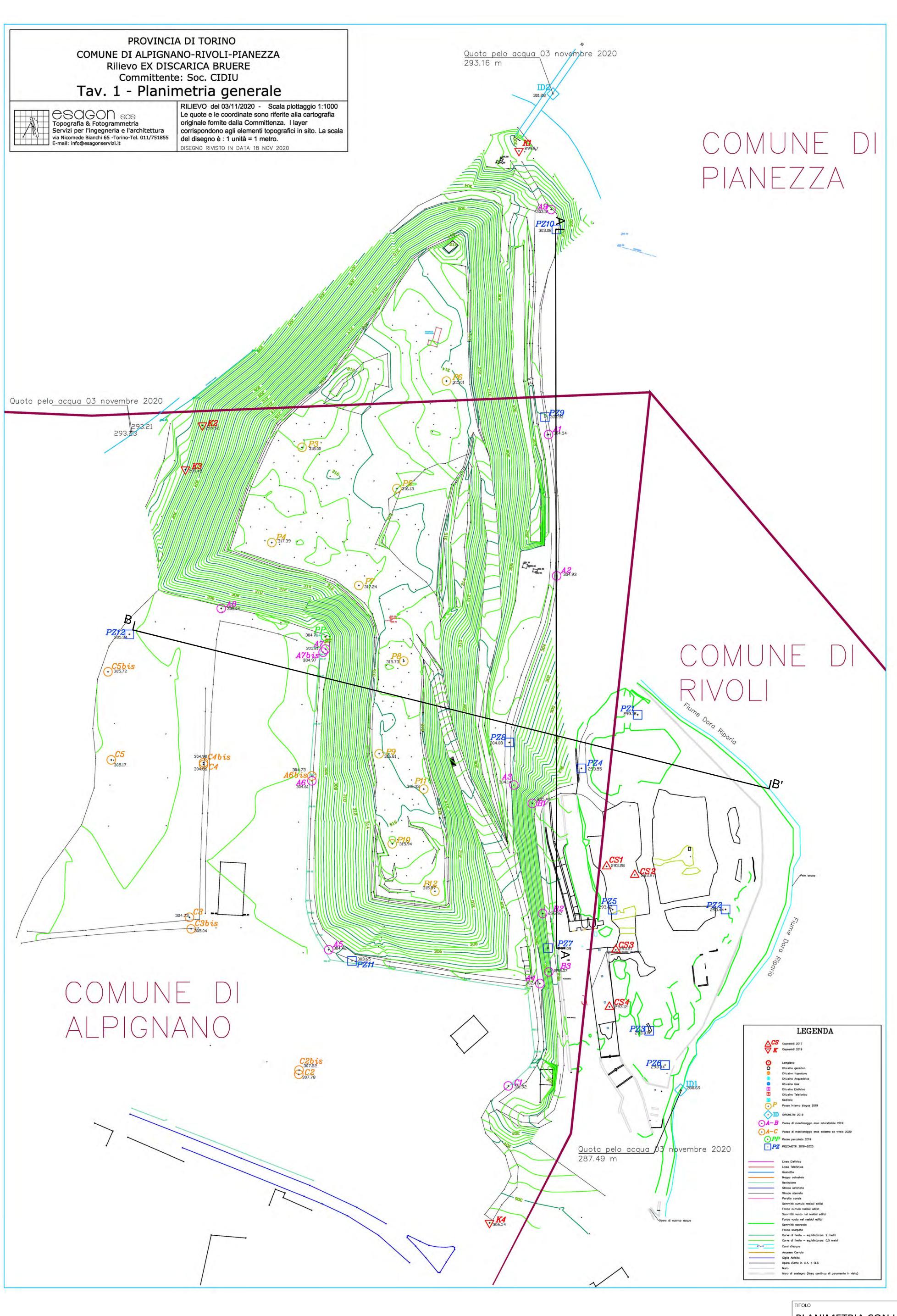
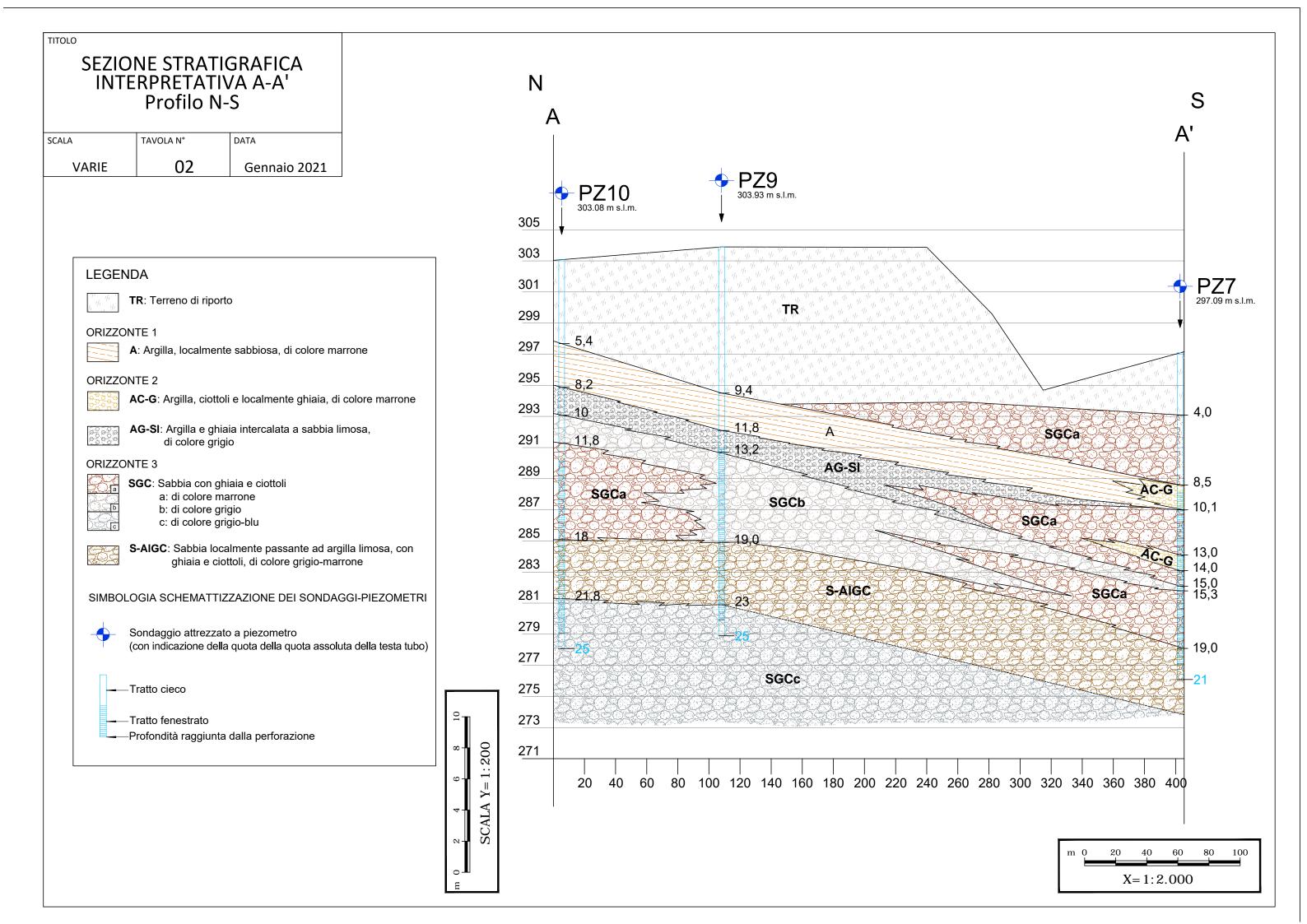

ALLEGATO 5

TAVOLA 5 – PLANIMETRIA PIEZOMETRI REALIZZATI

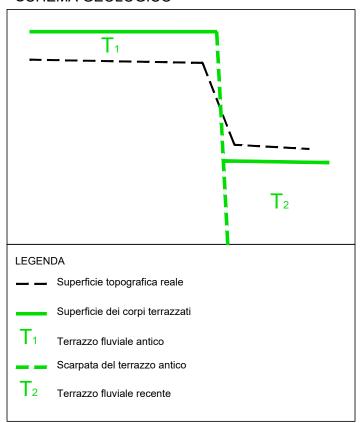
(planimetria di rilevo eseguita da Studio Esagon)

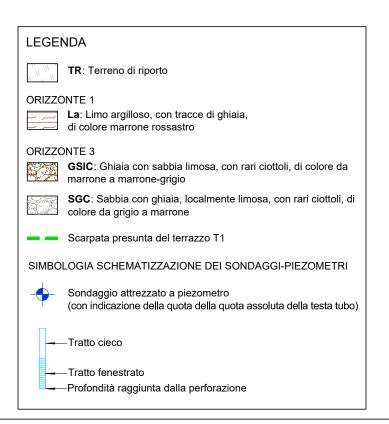


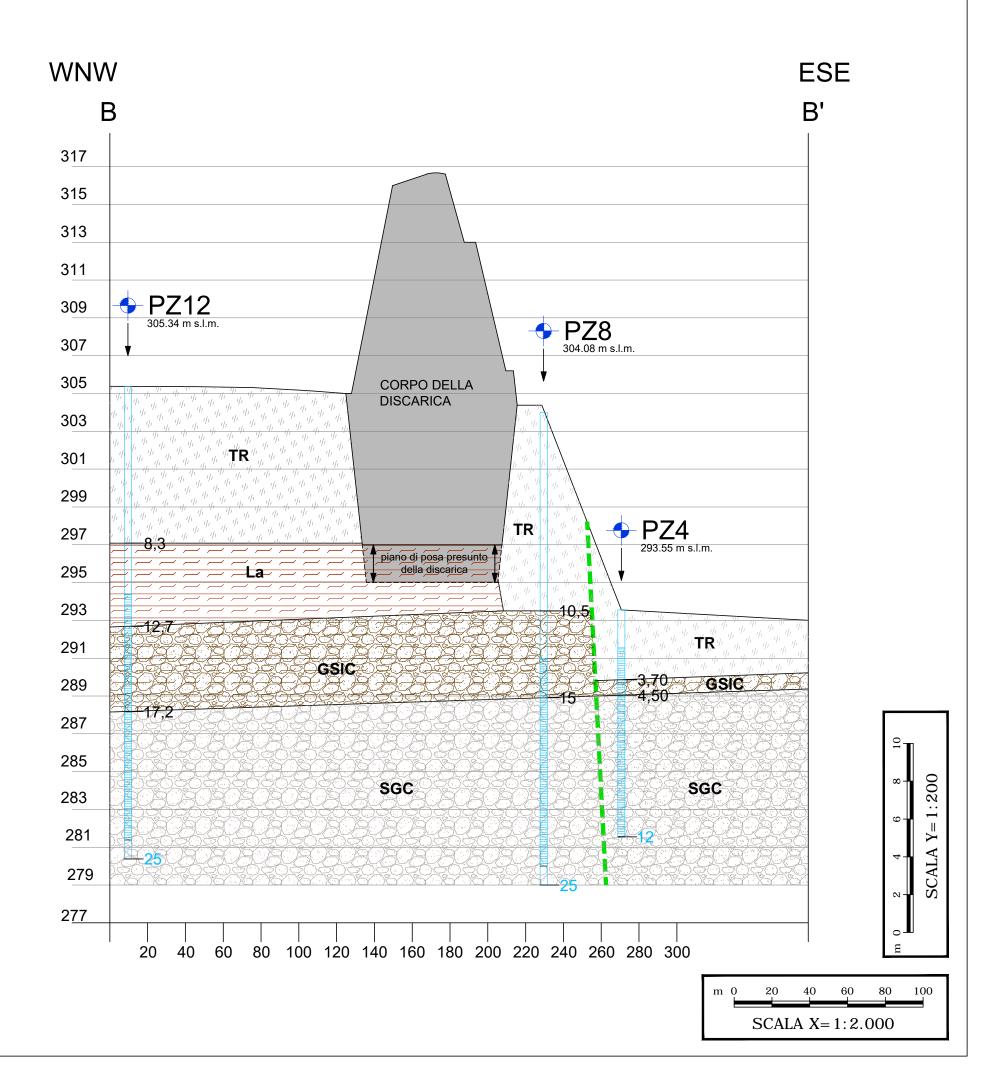
ALLEGATO 6 PLANIMETRIA E SEZIONI STRATIGRAFICHE

Gennaio 2021

1:1.000



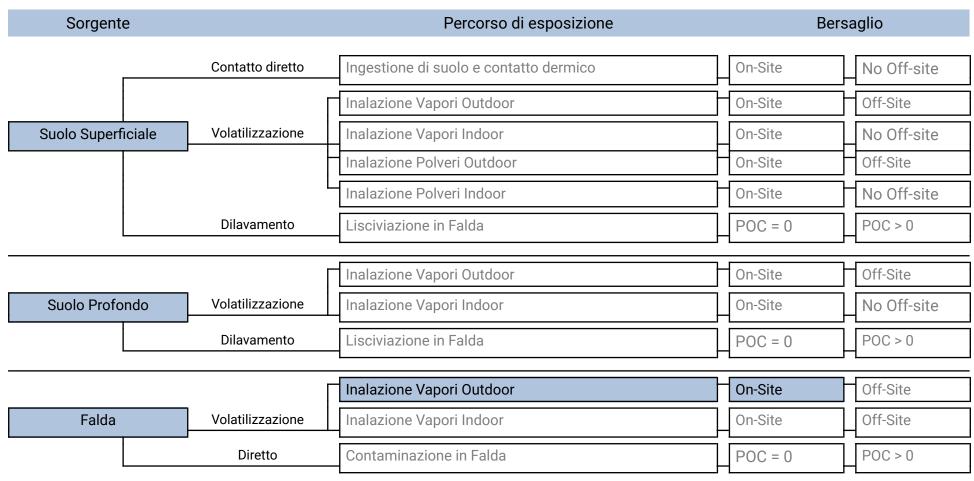

SEZIONE STRATIGRAFICA INTERPRETATIVA B-B' Profilo WNW-ESE


VARIE TAVOLA N° DATA

VARIE O3 Gennaio 2021

SCHEMA GEOLOGICO

ALLEGATO 7 PIEZOMETRIE



ALLEGATO 8 DATI ED ELABORAZIONE DELL'ADR

Risk-net

Nome del sito:	Discarica Bruere
Nome sub-area:	GW
Data:	23/12/2020
Tipo di analisi:	Calcolo Rischi (Modalità Diretta)
Tipo di analisi:	Calcolo Obiettivi di Bonifica (Modalità Inversa)
Note:	Inalazione vapori da GW outdoor

Modello Concettuale del Sito

Recettori on-site: Lavoratori

Recettori off-site: ---

Caratterizzazione integrativa

Tipo di misura		Tipo di recettore
Misure soil-gas outdoor		Recettori on-site
	Soll-gas -	Recettori off-site
Misure soil-gas indoor		Recettori on-site
	Soil-gas -	No Off-Site
Misure con camere di flusso	-2.524	Recettori on-site
	Flux-Chamber	Recettori off-site
Misure in Aria Outdoor	244	Recettori on-site
	- Curaou	Recettori off-site
Misure in Aria Indoor		Recettori on-site
	Indoor A	No Off-Site
Test di cessione (Suolo Superficiale)		POC = 0
		POC > 0
Test di cessione (Suolo Profondo)		POC = 0
	E E E E E E E E E E E E E E E E E E E	POC > 0

Opzioni di Calcolo

Descrizione	Valore
Considera esaurimento sorgente nel suolo superficiale per volatilizzazione	②
Considera esaurimento sorgente nel suolo profondo per volatilizzazione	©
Considera attenuazione vapori quando sorgente nel suolo al di sotto del p.c.	8
Utilizza il minore tra il fattore di volatilizzazione da suolo profondo e suolo superficiale	•
Volatilizzazione Outdoor off-site da falda	Trasporto in atmosfera (ADF)
Considera la biodegradazione durante il percorso di volatilizzazione	8
Considera esaurimento sorgente nel suolo superficiale per lisciviazione in falda	8
Considera esaurimento sorgente nel suolo profondo per lisciviazione in falda	8
Considera attenuazione durante lisciviazione da suolo superficiale (SAM)	•
Considera attenuazione durante lisciviazione da suolo profondo (SAM)	•
Considera la biodegradazione durante il percorso di lisciviazione in falda	8
Dispersione in falda	Dispersione in tutte le direzioni ma verticale verso il basso (DAF2)
Verifiche sullo spessore di miscelazione in falda	•
Considera biodegradazione durante trasporto in falda	8
Considera Csat per calcolo del Rischio e delle CSR	
Considera Csat solo per il calcolo delle CSR	8
Considera l'eventuale presenza di fase separata nell'esaurimento della sorgente	8
Considera ADAF	•
RfD vs RfC	RfC
Considera la frazione bioaccessibile per il percorso di ingestione di suolo	8
Rischio Accettabil	le
Individuale	0.000001
Cumulato	0.00001
Indice di Pericolo Acce	ttabile
Individuale	1
Cumulato	1

CRS

Contaminante	Suolo Superficiale	Suolo Profondo	Falda	Eluato da suolo superficiale	Eluato da suolo profondo	Soil-gas Outdoor	Soil-gas Indoor	Flux Chamber	Aria Outdoor	Aria Indoor
-	mg/kg	mg/kg	μg/L	μg/L	μg/L	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³
Benzene			4.12e+0	-	-	-	-	-	-	
Dicloropropano (1,2)			5.93e-1	-	-	-	-	-	-	
Dibromoetano (1,2)			1.40e-1	-	-	-	-	-	-	

Fattori di esposizione - On Site

Esposizione					On Site		
Ambito				Reside	enziale		Industriale
Parametri di esposizione	Simbolo	UM	Bambini	Adolescenti	Adulti	Anziani	Lavoratore
		Fatto	ri Comuni				
Peso Corporeo	BW	kg	15	15	70	70	70
Tempo di mediazione cancerogeni	AT	у			70		
Durata di esposizione	ED	у	6	10	24	5	25
Frequenza di esposizione	EF	d/y	350	350	350	350	250
		Ingestic	ne di suolo				
Frazione di suolo ingerita	FI	-	1	1	1	1	1
Tasso di ingestione suolo	IR	mg/d	200	200	100	100	50
		Contat	to Dermico				
Superficie di pelle esposta	SA	cm²	2800	2800	5700	5700	3300
Fattore di aderenza dermica	AF	mg/cm²/d	0.2	0.2	0.07	0.07	0.2
	Inala	azione di vap	ori e polveri outo	door			
Frequenza giornaliera outdoor (c)	EFgo	h/d	24	0.5	24	1.9	8
Tasso di inalazione di vapori e polveri outdoor (a);(b)	Во	m³/h	0.7	0.7	0.9	0.9	2.5
Frazione di suolo nella polvere outdoor	Fsd	-	1	1	1	1	1
	Ina	lazione di va _l	oori e polveri ind	oor			
Frequenza Giornaliera Indoor	EFgi	h/d	24	19.6	24	22.4	8
Tasso di inalazione di vapori e polveri indoor (b)	Bi	m³/h	0.7	0.7	0.9	0.9	0.9
Frazione di suolo nella polvere indoor	Fi		1	1	1	1	1
		Ingestio	ne di acqua				
Tasso di Ingestione di acqua	IRw	L/d	1	1	2	2	1

Parametri del sito - Geometria Sorgenti

Descrizione	Valore								
Parametro	Simbolo	Default	Sito-Specifico	UM	check				
Geometria Sorgenti									
Stessa dime	nsione per	tutte le sorgenti							
Estensione della sorgente nella direzione del flusso di falda	W	45	45	m	0				
Estensione della sorgente nella direzione ortogonale al flusso di falda	Sw	45	45	m	0				
Altezza della zona di miscelazione in aria	∂air	2	2	m	0				
Estensione della sorgente nella direzione principale del vento	W'	45	550	m	0				
Estensione della sorgente nella direzione ortogonale a quella del vento	Sw'	45	45	m	0				
Su	iolo Superf	iciale							
Profondità del top della sorgente nel suolo superficiale rispetto al p.c.	Ls,SS	0	0	m	0				
Spessore della sorgente nel suolo superficiale insaturo	d	1	1	m	0				
Suolo Profondo									
Profondità del top della sorgente nel suolo profondo rispetto al p.c.	Ls,SP	1	1	m	0				
Spessore della sorgente nel suolo profondo insaturo	ds	2	2	m	0				
Soggiacenza della falda da p.c.	Lgw	3	6.92	m	0				

Parametri del sito - Zona Insatura

Descrizione		Valore					
Parametro	Simbolo	Default	Sito-Specifico	UM	check		
	Zona Insatu	ıra					
Tessitura rappresentativa del suolo i	Sand						
Porosità efficace del terreno in zona insatura	θе	Letteratura	0.385	-	0		
Contenuto volumetrico di acqua nel suolo	θw	Letteratura	0.068	-	0		
Contenuto volumetrico di aria nel suolo	θа	Letteratura	0.317	-	•		
Contenuto volumetrico di acqua nella frangia capillare	Өw,сар	Letteratura	0.33	-	0		
Contenuto volumetrico di aria nella frangia capillare	θа,сар	Letteratura	0.055	-	•		
Spessore della frangia capillare	hcap	Letteratura	0.1	m	0		
Carico idraulico critico (potenziale di matrice)	hcr	Letteratura	-0.0402	m	•		
Conducibilità idraulica del terreno nella zona insatura	Ksat	Letteratura	8.25e-5	m	•		
Battente idrico in superficie	Hw	0.25	0.25	m	•		
Densità del suolo	ρs	1.7	1.7	g/cm³	•		
pH del suolo	pН	6.8	6.8	-	0		
Frazione di carbonio organico - suolo superficiale	foc,SS	0.01	0.01	g/g	Ø		
Frazione di carbonio organico - suolo profondo	foc,SP	0.01	0.01	g/g	②		
Frazione residua dei pori nel suolo (per calcolo Cres)	Sr	0.04	0.04	m	0		
Spessore della zona insatura	hv	Calcolato	6.820	m	Ø		
Infi	Itrazione efficace	e calcolata					
Piovosità media annua	Р	129	129	cm/y	Ø		
Frazione areale di fratture outdoor	ηout	1	1	cm/y	②		
Infiltrazione efficace nel suolo	lef	Calcolato	29.95	cm/y	0		
Spessore della zona di miscelazione in falda	δgw	Calcolato	2.00	m	no check		
Fattore di diluizione in falda	LDF	Calcolato	4.70	-	no check		

Parametri del sito - Outdoor

Descrizione	Valore				
Parametro	Default	Sito-Specifico	UM	check	
Velocità del vento	Uair	2.25	0.80	m/s	0
Portata di particolato per unità di superficie	Pe	6.9e-14	6.9e-14	g/cm/s²	0
Distanza recettore off site - ADF	POC ADF	100	100	m	•
Classe di Stabilità Atmosferica			Sito-	specifico	
Coefficiente di dispersione trasversale	σу	10	10	m	0
Coefficiente di dispersione verticale	σz	10	10	m	0
Profondità della zona aerobica da p.c.	La Outdoor	1	1	m	•

Contaminanti selezionati - Parametri chimico-fisici (File DB caricato: Default Database (ISS-INAIL, 2018))

Contaminante	Vol	Sol	Н	Kd	Kd(pH)	Koc	Koc(pH)	Dair	Dw	ρ
-	-	mg/L	-	L/kg	L/kg	L/kg	L/kg	cm²/s	cm²/s	kg/L
Benzene	VOC*	1790	0.227			146		0.0895	0.0000103	0.877
Dicloropropano (1,2)	VOC*	2800	0.115			60.7		0.0733	0.00000973	1.16
Dibromoetano (1,2)	VOC*	3910	0.0266			39.6		0.043	0.0000104	2.17

Contaminanti selezionati - Parametri tossicologici (File DB caricato: Default Database (ISS-INAIL, 2018))

Contaminante	ADAFc	ADAFa	SFing	SFinal	IUR	RfDing	RfDinal	RfC	ABS
	•	-	(mg/kg/d)-1	(mg/kg/d)-1	(µg/m³)-1	(mg/kg/d)	(mg/kg/d)	(µg/m³)	-
Benzene			0.055		0.0000078	0.004		0.03	0.1
Dicloropropano (1,2)			0.037		0.0000037	0.04		0.004	0.1
Dibromoetano (1,2)			2		0.0006	0.009		0.009	0.1

Contaminanti selezionati - CSC (File DB caricato: Default Database (ISS-INAIL, 2018))

Contaminante	CSC Suoli Residenziali	CSC Suoli Industriali	CSC Falda
	mg/kg	mg/kg	mg/L
Benzene	0.1	2	0.001
Dicloropropano (1,2)	0.3	5	0.00015
Dibromoetano (1,2)	0.01	0.1	0.00001

Rischio dalla Falda

Contaminante	CRS	f	CRS/f	Sol	R (HH)	HI (HH)	Rgw (GW)
-	μg/L	-	μg/L	μg/L	-	-	-
Benzene	4.12e+0		4.12e+0	1.79e+6	7.62e-9	9.12e-5	-
Dicloropropano (1,2)	5.93e-1		5.93e-1	2.80e+6	2.51e-10	4.75e-5	-
Dibromoetano (1,2)	1.40e-1		1.40e-1	3.91e+6	2.77e-9	1.43e-6	-
Cumulato Outdoor (On-site)					1.06e-8	1.40e-4	
Cumulato Indoor (On-site)					-	-	
Cumulato ingestione di acqua (On-site)					-	-	
Cumulato Outdoor (Off-site)					-	-	
Cumulato Indoor (Off-site)					-	-	
Cumulato ingestione di acqua (Off-site)					-	-	

CSR per la Falda

Contaminante	CRS	Sol	CSC	CSR (HH)	CSR (GW)	CSR
-	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Benzene	4.12e+0	1.79e+6	1.00e+0	5.40e+2	-	5.40e+2
Dicloropropano (1,2)	5.93e-1	2.80e+6	1.50e-1	2.36e+3	-	2.36e+3
Dibromoetano (1,2)	1.40e-1	3.91e+6	1.00e-3	5.06e+1	-	5.06e+1

CSR cumulative per la Falda

Contaminante	CRS	CSRind	f	CSRcum	Sol	R (HH)	HI (HH)	Rgw (GW)
-	μg/L	μg/L	-	μg/L	μg/L	1	-	-
Benzene	4.12e+0	5.40e+2		5.40e+2	1.79e+6	1.00e-6	1.20e-2	-
Dicloropropano (1,2)	5.93e-1	2.36e+3		2.36e+3	2.80e+6	1.00e-6	1.89e-1	-
Dibromoetano (1,2)	1.40e-1	5.06e+1		5.06e+1	3.91e+6	1.00e-6	5.19e-4	-
Cumulato Outdoor (On-site)						3.00e-6	2.02e-1	
Cumulato Indoor (On-site)						-	-	
Cumulato ingestione di acqua (On-site)						-	-	
Cumulato Outdoor (Off-site)						-	-	
Cumulato Indoor (Off-site)						-	-	
Cumulato ingestione di acqua (Off-site)						-	-	

Model Description:

```
Title:
```

Dora Riparia

100 Simulation time (years).

Molecular weight (g/mol).

Surface Water Mixing Model Data	
Conductivity of SW bed (m) Depth of GW aquifer next to SW (m) Length of reach along SW shore (m) Gradient between GW and SW (m/m) SW flow rate (m^3/d) Cross-sectional area of river (m^2). Fraction of x-section for mixing (-). Fraction org. carbon in sediments (g/g).	86. 11. 5.00E+02 0.10 2.25E+06 20. 0.50
CHEMICAL DATA FOR: Ferro	
Diffusion coefficient in air (cm2/s) Diffusion coefficient in water (cm2/s) Solubility (mg/l) Vapor pressure (mmHg) KOC (L/kg). Henry's Law coefficient (-). Molecular weight (g/mol). Degradation rate in surface water (1/d).	0.0 1.00E-06 1.00E+05 0.0 0.0 0.0 0.0
Source Concentrations:	
Source conc. in GW for SW mixing model (mg/l) .	12.
CHEMICAL DATA FOR: Boro	
Diffusion coefficient in air (cm2/s) Diffusion coefficient in water (cm2/s) Solubility (mg/l) Vapor pressure (mmHg) KOC (L/kg). Henry's Law coefficient (-). Molecular weight (g/mol). Degradation rate in surface water (1/d). Source Concentrations:	0.0 1.00E-06 1.00E+04 0.0 0.0 0.0 0.0
Source conc. in GW for SW mixing model (mg/l).	2.0
CHEMICAL DATA FOR: Manganese	
Diffusion coefficient in air (cm2/s) Diffusion coefficient in water (cm2/s) Solubility (mg/l) Vapor pressure (mmHg) KOC (L/kg). Henry's Law coefficient (-). Molecular weight (g/mol). Degradation rate in surface water (1/d).	0.0 1.00E-06 1.00E+05 0.0 0.0 0.0 0.0
Source Concentrations:	
Source conc. in GW for SW mixing model (mg/l).	2.8
CHEMICAL DATA FOR: Ammoniaca	
Diffusion coefficient in air (cm2/s) Diffusion coefficient in water (cm2/s) Solubility (mg/l) Vapor pressure (mmHg) KOC (L/kg). Henry's Law coefficient (-).	0.0 1.00E-06 1.00E+03 0.0 0.0

0.0

```
Source Concentrations:
Source conc. in GW for SW mixing model (mg/l).
                                                           3.38E+02
 CHEMICAL DATA FOR: Arsenico
Diffusion coefficient in air (cm2/s)
                                                            0.0
Diffusion coefficient in water (cm2/s)
                                                           1.00E-06
                                                           3.02E+06
Solubility (mg/l)
Vapor pressure (mmHg)
                                                            0.0
Kd (partition coefficient) (L/kg)
                                                            29.
Henry's Law coefficient (-).
                                                            0.0
Molecular weight (g/mol).
                                                            75.
Degradation rate in surface water (1/d).
                                                            0.0
 Source Concentrations:
Source conc. in GW for SW mixing model (mg/l).
                                                          1.20E-02
 CHEMICAL DATA FOR: Nichel
Diffusion coefficient in air (cm2/s)
Diffusion coefficient in water (cm2/s)
                                                            0.0
                                                           1.00E-06
Solubility (mg/l)
                                                           4.85E+05
Vapor pressure (mmHg)
                                                            0.0
Kd (partition coefficient) (L/kg)
                                                            65.
Henry's Law coefficient (-).
                                                            0.0
Molecular weight (g/mol).
                                                            59.
Degradation rate in surface water (1/d).
                                                            0.0
Source Concentrations:
Source conc. in GW for SW mixing model (mg/l).
                                                          0.35
CHEMICAL DATA FOR: Benzene
Diffusion coefficient in air (cm2/s)
                                                           8.95E-02
                                                           1.03E-05
Diffusion coefficient in water (cm2/s)
Solubility (mg/l)
                                                           1.79E+03
Vapor pressure (mmHg)
                                                            97.
KOC (L/kg).
                                                           1.46E+02
Henry's Law coefficient (-).
                                                           0.23
Molecular weight (g/mol).
                                                            78.
Degradation rate in surface water (1/d).
                                                            0.0
 Source Concentrations:
Source conc. in GW for SW mixing model (mg/l).
                                                           4.12E-03
 CHEMICAL DATA FOR: 1,2-Dicloropropano
Diffusion coefficient in air (cm2/s)
                                                           7.33E-02
Diffusion coefficient in water (cm2/s)
                                                           9.73E-06
Solubility (mg/l)
                                                           2.80E+03
Vapor pressure (mmHg)
                                                            53.
KOC (L/kg).
                                                            61.
Henry's Law coefficient (-).
                                                           0.12
Molecular weight (q/mol).
                                                           1.13E+02
Degradation rate in surface water (1/d).
                                                            0.0
 Source Concentrations:
 ______
Source conc. in GW for SW mixing model (mg/l).
                                                           5.93E-04
 CHEMICAL DATA FOR: 1,2-Dibromoetano
Diffusion coefficient in air (cm2/s)
                                                           4.30E-02
Diffusion coefficient in water (cm2/s)
                                                           1.04E-05
Solubility (mg/l)
                                                           3.91E+03
Vapor pressure (mmHq)
                                                            10.
KOC (L/kg).
                                                            40.
```

Degradation rate in surface water (1/d).

Henry's Law coefficient (-).

0.0

2.66E-02

Molecular weight (g/mol). 1.88E+02
Degradation rate in surface water (1/d). 0.0

Source Concentrations:

1.40E-04

Source conc. in GW for SW mixing model (mg/l).

Concentration in groundwater adjacent to surface water Conductivity of SW bed [m/d] FOC in sediment [g/g] Depth of SW bed [m] Length of reach [m] Gradient between GW and SW [m/m]	3.38E+02 86. 0.0 11. 5.00E+02
Calculated GW Inflow to SW [m3/d] Cross-sectional area of river [m2]. Calculated SW volume [m3] Fraction of SW for mixing [-] Adjusted SW volume [m3] SW flow rate [m3/d] Adjusted SW flow rate [m3/d] (sum of GW inflow and SW inflow)	4.75E+04 20. 1.00E+04 0.50 5.00E+03 2.25E+06 1.12E+06 1.17E+06
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION Ammoniaca

Time (yr)	Concentration Surface Water (mg/l)	Concentration in Sediment (mg/kg)	Mass Flux from GW to SW (mg/d)
1.0	1.37E+01	0.00E+00 1	61E+10

Concentration in groundwater adjacent to	
surface water	1.20E-02
Conductivity of SW bed [m/d]	86.
Kd in sediment [L/kg]	29.
Depth of SW bed [m]	11.
Length of reach [m]	5.00E+02
Gradient between GW and SW [m/m]	0.10
Calculated GW Inflow to SW [m3/d]	4.75E+04
Cross-sectional area of river [m2].	20.
Calculated SW volume [m3]	1.00E+04
Fraction of SW for mixing [-]	0.50
Adjusted SW volume [m3]	5.00E+03
SW flow rate [m3/d]	2.25E+06
Adjusted SW flow rate [m3/d]	1.12E+06
Calculated total flow [m3]	1.17E+06
(sum of GW inflow and SW inflow)	
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION Arsenico

Time	Concentration Surface Water	Concentration in Sediment	Mass Flux from GW to SW
(yr)	(mg/l)	(mg/kg)	(mg/d)
1.0	4.87E-04	3.48E-01	5.70E+05

TATE AND TRANSPORT MODEL OUT OF FOR. Benzeite

SURFACE WATER MIXING ZONE MODEL

Concentration in groundwater adjacent to	
surface water	4.12E-03
Conductivity of SW bed [m/d]	86.
FOC in sediment [g/g]	0.0
Depth of SW bed [m]	11.
Length of reach [m]	5.00E+02
Gradient between GW and SW [m/m]	0.10
Calculated GW Inflow to SW [m3/d]	4.75E+04
Cross-sectional area of river [m2].	20.
Calculated SW volume [m3]	1.00E+04
Fraction of SW for mixing [-]	0.50
Adjusted SW volume [m3]	5.00E+03
SW flow rate [m3/d]	2.25E+06
Adjusted SW flow rate [m3/d]	1.12E+06
Calculated total flow [m3]	1.17E+06
(sum of GW inflow and SW inflow)	
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION Benzene

Time (yr)	Concentration Surface Water (mg/l)	Concentration in Sediment (mg/kg)	Mass Flux from GW to SW (mg/d)
1.0	1.67E-04	0.00E+00	 1.96E+05

FAIL AND TRANSPORT MODEL OUTPUT FOR. BOTO

SURFACE WATER MIXING ZONE MODEL

Concentration in groundwater adjacent to	
surface water	2.0
Conductivity of SW bed [m/d]	86.
FOC in sediment [g/g]	0.0
Depth of SW bed [m]	11.
Length of reach [m]	5.00E+02
Gradient between GW and SW [m/m]	0.10
Calculated GW Inflow to SW [m3/d]	4.75E+04
Cross-sectional area of river [m2].	20.
Calculated SW volume [m3]	1.00E+04
Fraction of SW for mixing [-]	0.50
Adjusted SW volume [m3]	5.00E+03
SW flow rate [m3/d]	2.25E+06
Adjusted SW flow rate [m3/d]	1.12E+06
Calculated total flow [m3]	1.17E+06
(sum of GW inflow and SW inflow)	
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION Boro

Time	Concentration	Concentration	Mass Flux
	Surface Water	in Sediment	from GW to SW
	(mg/l)	(mg/kg)	(mg/d)
1.0	8.12E-02		.50E+07

Concentration in groundwater adjacent to surface water Conductivity of SW bed [m/d] FOC in sediment [g/g] Depth of SW bed [m]. Length of reach [m]. Gradient between GW and SW [m/m].	1.40E-04 86. 0.0 11. 5.00E+02
Calculated GW Inflow to SW [m3/d] Cross-sectional area of river [m2]. Calculated SW volume [m3] Fraction of SW for mixing [-] Adjusted SW volume [m3] SW flow rate [m3/d] Adjusted SW flow rate [m3/d] (sum of GW inflow and SW inflow)	4.75E+04 20. 1.00E+04 0.50 5.00E+03 2.25E+06 1.12E+06 1.17E+06
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION

1,2-Dibromoetano

	Concentration	Concentration	Mass Flux
Time (vr)	Surface Water (mg/l)	in Sediment (mg/kg)	from GW to SW (mg/d)
1.0	5.68E-06	0.00E+00 6	5.65E+03

Concentration in groundwater adjacent to	
surface water	5.93E-04
Conductivity of SW bed [m/d]	86.
FOC in sediment [g/g]	0.0
Depth of SW bed [m]	11.
Length of reach [m]	5.00E+02
Gradient between GW and SW [m/m]	0.10
Calculated GW Inflow to SW [m3/d]	4.75E+04
Cross-sectional area of river [m2].	20.
Calculated SW volume [m3]	1.00E+04
Fraction of SW for mixing [-]	0.50
Adjusted SW volume [m3]	5.00E+03
SW flow rate [m3/d]	2.25E+06
Adjusted SW flow rate [m3/d]	1.12E+06
Calculated total flow [m3]	1.17E+06
(sum of GW inflow and SW inflow)	1.1,1100
Decay rate in SW [1/d]	0.0
becay race in bw [1/4]	0.0

SURFACE WATER CONCENTRATION 1,2-Dicloropropano

Time (yr)	Concentration Surface Water (mg/l)	Concentration in Sediment (mg/kg)	Mass Flux from GW to SW (mg/d)
1.0	2.41E-05	0.00E+00 2	2.82E+04

FAIE AND TRANSPORT MODEL OUTPUT FOR: FELLO

SURFACE WATER MIXING ZONE MODEL

Concentration in groundwater adjacent to surface water Conductivity of SW bed [m/d] FOC in sediment [g/g] Depth of SW bed [m] Length of reach [m] Gradient between GW and SW [m/m].	12. 86. 0.0 11. 5.00E+02
Calculated GW Inflow to SW [m3/d] Cross-sectional area of river [m2]. Calculated SW volume [m3] Fraction of SW for mixing [-] Adjusted SW volume [m3] SW flow rate [m3/d] Adjusted SW flow rate [m3/d] (sum of GW inflow and SW inflow)	4.75E+04 20. 1.00E+04 0.50 5.00E+03 2.25E+06 1.12E+06 1.17E+06
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION Ferro

Time	Concentration Surface Water	Concentration in Sediment	Mass Flux
(yr)	(mg/l)	(mg/kg)	(mg/d)
1.0	4.92E-01	0.00E+00	5.76E+08

Concentration in groundwater adjacent to	
surface water	2.8
Conductivity of SW bed [m/d]	86.
FOC in sediment [g/g]	0.0
Depth of SW bed [m]	11.
Length of reach [m]	
Gradient between GW and SW [m/m]	0.10
Calculated GW Inflow to SW [m3/d]	4.75E+04
Cross-sectional area of river [m2].	20.
Calculated SW volume [m3]	1.00E+04
Fraction of SW for mixing [-]	0.50
Adjusted SW volume [m3]	5.00E+03
SW flow rate [m3/d]	2.25E+06
Adjusted SW flow rate [m3/d]	1.12E+06
Calculated total flow [m3]	1.17E+06
(sum of GW inflow and SW inflow)	
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION Manganese

Time	Concentration Surface Water	Concentration in Sediment	Mass Flux from GW to SW
(yr)	(mg/l)	(mg/kg)	(mg/d)
1.0	1.14E-01	0.00E+00	1.33E+08

Concentration in groundwater adjacent to	
surface water Conductivity of SW bed [m/d] Kd in sediment [L/kg] Depth of SW bed [m] Length of reach [m] Gradient between GW and SW [m/m].	11.
Calculated GW Inflow to SW [m3/d] Cross-sectional area of river [m2]. Calculated SW volume [m3] Fraction of SW for mixing [-] Adjusted SW volume [m3] SW flow rate [m3/d] Adjusted SW flow rate [m3/d] (sum of GW inflow and SW inflow)	4.75E+04 20. 1.00E+04 0.50 5.00E+03 2.25E+06 1.12E+06 1.17E+06
Decay rate in SW [1/d]	0.0

SURFACE WATER CONCENTRATION

Time	Concentration Surface Water	Concentration in Sediment	Mass Flux from GW to SW
(yr)	(mg/l)	(mg/kg)	(mg/d)
1.0	1.42E-02	2.28E+01 1	66E+07

ALLEGATO 9 CERTIFICATI ANALISI DI LABORATORIO (su CD)